Ветроэнергетические установки 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Ветроэнергетические установки



Ветроэнергетические установки представляют собой достаточно сложное изделие. Многие из ранее разработанных образцов оказались ненадежными. Например, фотоэлектрический модуль, в отличие от ВЭУ, изначально является надежным изделием, так как его конструкция не содержит никаких движущихся элементов. ВЭУ состоит из множества механизмов, и надежность каждого отдельного из них зависит от профессионализма его разработчиков и производителей. Размер современных ВЭУ имеет широкий диапазон: от малых 100 кВт-ных, предназначенных для обеспечения электроэнергией отдельных домов или коттеджей, до огромных установок мощностью более 1 МВт, диаметр лопастей которых превышает 50 м. Подавляющее большинство современных ВЭУ представляет собой горизонтально-осевые конструкции с тремя лопастями диаметром 15-40 метров. Такие ВЭУ обладают установленной мощностью 50-600 кВт и более. Часто подобные ВЭУ сгруппированы на одной территории, образуя, таким образом, ветроэлектростанции (ВЭС). Электроэнергия, выработанная на ВЭС, поступает в электросеть. Современные большие ВЭУ в основном вырабатывают электроэнергию с напряжением 690 В. Трансформатор, устанавливаемый рядом с ВЭУ или в ее башне, повышает напряжение до 10-30 кВ. Стоимость 1 кВт установленной мощности современной ВЭУ составляет около 800 долларов США, что гораздо ниже показателя 1981 года - 2500 долларов США за 1 кВт установленной мощности.

 

МЕГАВАТНЫЕ ВЕТРОТУРБИНЫ

За короткую историю развития современных ВЭУ стало ясно, что коммунальные энергетические компании отдают предпочтение большим установкам. Именно поэтому конструкторами и разработчиками ВЭУ было предпринято много усилий для разработки таких машин, которые бы соответствовали техническим, эстетическим и экономическим требованиям клиентов. В частности, значительные усилия были предприняты в этой области в начале 1980-х. Так, Департаментом по энергетике США была принята программа MOD 1,5, в соответствии с которой установленная мощность ВЭУ должна была достигать 3,2 МВт. В Дании разрабатывались ВЭУ с установленной мощностью 630 кВт (Nibe A и B) и 2 МВт (компания "Tjaereborg"); в Швеции - ВЭУ мощностью 3 МВт (компания "Nasudden"), в Германии -3 МВт (компания "Growian"). Большинство из них оказались неудачными, хотя уже тогда стало ясно, что потенциал разработки ВЭУ мощностью более 2 МВт является многообещающим. Многие из европейских исследовательских компаний в рамках существующих инициатив получили частичное или полное финансирование для разработки прототипов мегаваттных ВЭУ. Первая из таких опытных моделей была установлена в конце 1995 года. Сегодня уже несколько моделей установлено, в основном они успешно работают. Ведущие производители ветротурбин продолжают работать над усовершенствованием выпускаемых 500 кВт-ных машин. Это подтверждает мнение о том, что маркетинговая стратегия большинства из них нацелена на удержание своей доли рынка в классе ВЭУ 500-800 кВт с диаметром ротора 39-50 м. Тем не менее, современный ветроэнергетический рынок продолжает развиваться в направлении более широкого применения промышленных ВЭУ мощностью один и более МВт. В большинстве случаев компании используют модели своих турбин малой мощности в качестве основы для конструирования мевагаттных агрегатов. Исключением является немецкая компания "Tacke WindTechnik". Компания представила новую крупную ВЭУ с лопастями с изменяющимся углом. Конструкция этой ВЭУ ранее не использовалась компанией в других моделях. На сегодняшнем рынке производителей больших ВЭУ лидируют 5 компаний - "Enercon", "Nordtank", "Tacke", "Vestas" и "Bonus". Выпускаемые ими агрегаты имеют установленную мощность от 1,5 МВт и более (с 2003 года уже до 5 МВт). В любом случае установка мегаваттных машин представляет собой новые возможности. В областях, которые уже практически полностью "заполнены" ВЭУ меньших мощностей, естественно, трудно найти площадки для установки мегаваттных турбин, учитывая и тот фактор, что они должны гармонировать с существующими ВЭУ. В Дании проводились исследования по поиску площадок для мегаваттных агрегатов на так называемых "промышленных" территориях. Результаты исследования выявили подходящие площадки в промышленных районах и в гаванях для монтажа около 200 мегаваттных установок, что соответствует 200-300 МВт установленной мощности. Количество энергии, выработанной такими машинами, может быть существенным. Мегаваттная турбина может ежегодно вырабатывать около 5 миллионов кВт·ч при средней скорости ветра выше 9 м/сек. При таких же ветровых условиях турбина с установленной мощностью 1,3 МВт может вырабатывать уже 7 миллионов кВт·ч в год.

 

ПРОИЗВОДСТВО ЭНЕРГИИ

Одним из наиболее важных характеристик ВЭУ является ее номинальная мощность. Эта величина указывает, сколько кВт·ч энергии турбина выработает при максимальной нагрузке. Так, 500 кВт-ная ВЭУ произведет 500 кВт· ч энергии за час работы при скорости ветра 15 м/сек (максимально необходимая скорость ветра). Обычно 600 кВт-ная машина в год производит около 500 000 кВт· ч при средней скорости ветра 4,5 м /сек. При скорости ветра 9 м/сек она выработает до 2 000 000 кВт·ч в год. Количество произведенной за год энергии не может быть рассчитано путем простого умножения установленной мощности (в данном случае 600 кВт) на среднюю годовую скорость ветра. Необходимо также учитывать коэффициент использования установленной мощности (КПД) для определения эффективности работы турбины в течение года на определенной площадке. КПД - это фактическая годовая выработка электроэнергии, разделенная на теоретически максимальную выработку при условии, что машина работала в режиме максимальной нагрузки в течение всех 8760 часов года. Например, если 600 кВт-ная турбина вырабатывает 2 млн. кВт в год, расчет ее КПД выглядит следующим образом: 2 000 000:(365,25·24· 600) = 2 000 000: 5 259 600 = 0,38 = 38%. Теоретически значение КПД может варьироваться от 0 до 100%, но практически он располагается в пределах от 20 до 70% и чаще всего КПД равен 25-30%. Очень важным фактором, влияющим на производительность ВЭУ, является ее месторасположение. Как описывалось в предыдущих главах, скорость ветра возрастает с высотой. Поэтому большинство ВЭУ имеют высокие башни. Чем выше турбина относительно вершин соседних препятствий, тем меньше они заслоняют ветер. Однако, в некоторых случаях влияние препятствий может ощущаться на расстоянии от земли, в пять раз превышающем их высоту. Если препятствие выше всего лишь на половину высоты ВЭУ, то определить его влияние трудно из-за сложной геометрии взаимодействия с ветром. Ограничения по пределу прочности некоторых материалов, используемых в конструкции башни, ограничили высоту большинства башен (приблизительно до 30 м). На ветростанциях ВЭУ устанавливаются на расстоянии, равном от 5 до 15 диаметров ротора. Это необходимо для того, чтобы избежать взаимного влияния турбулентности, возникающей на лопастях соседних ВЭУ.

 

ПРИМЕНЕНИЕ ВЕТРОТУРБИН
БОЛЬШИЕ ВЕТРОТУРБИНЫ, ВЭС

 

Как мы уже упоминали, развитие ВЭУ началось с использования малых турбин для ограниченного применения, но, по мере увеличения их размеров, ВЭУ стали менее привлекательны для использования в частном секторе в виде индивидуального, "домашнего" источника электроэнергии. Соответственно, практически вся выработанная большими ВЭУ энергия поступает в электросеть. Количество энергии, выработанной большими турбинами, настолько велико, что может превышать мощность местных линий электропередач. В первую очередь, это типично для прибрежных территорий, имеющих хороший ветровой потенциал, но чаще всего не имеющий необходимой энергоструктуры. При этом возникает необходимость строительства новых высоковольтных линий, что, естественно, связанно с дополнительными затратами. Поскольку дополнительные затраты экономически нецелесообразны для одиночных установок, появилась устойчивая тенденция к группированию ВЭУ на определенной территории и строительству ВЭС. Энергия, выработанная всеми ВЭУ, расположенными на ВЭС, объединяется и продается по контракту коммунальным компаниям. Начиная с первой половины 80-х годов, большие ВЭУ стали разрабатываться для ВЭС, строящихся в "ветровых ущельях" Калифорнии. Большие ВЭУ (обычно 400-600 кВт), установленные на одной ВЭС, обычно объединены и формой собственности. В США ВЭС принадлежат частным энергетическим компаниям, а не коммунальным службам. И хотя вначале существовали проблемы с плохо сконструированными агрегатами и чрезмерно алчными продавцами, все же ВЭС стали наиболее эффективным способом производства электроэнергии за счет энергии ветра. В Калифорнии сейчас работает более 16 тысяч больших ВЭУ, а выработанная ими энергия достаточна для обеспечения такого города как Сан- Франциско. Стоимость больших ВЭУ значительно понизилась, и сегодня даже наиболее консервативные представители энергокоммунальных компаний США предсказывают рост числа ВЭС в ближайшем десятилетии, причем в других штатах страны. Согласно недавно проведенному в США исследованию, штат Северная Дакота был окрещен "Саудовской Аравией ветроэнергетики".

 



Поделиться:


Последнее изменение этой страницы: 2017-02-22; просмотров: 244; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.16.15.149 (0.004 с.)