Неспецифическая резистентность и иммунитет. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Неспецифическая резистентность и иммунитет.



Внешнее дыхание.

Биомеханика дыхательных движений. Дыхание используется в окислительных процессах, в ходе которых образуется энергия, расходующаяся на рост, развитие и жизнедеятельность. Процесс дыхания состоит из трех основных звеньев – внешнего дыхания, транспорта газов кровью, внутреннего дыхания. Внешнее дыхание представляет собой обмен газов между организмом и внешней средой. Оно осуществляется с помощью двух процессов – легочного дыхания и дыхания через кожу. Легочное дыхание заключается в обмене газов между альвеолярным воздухом и окружающей средой и между альвеолярным воздухом и капиллярами. При газообмене с внешней средой поступает воздух, содержащий 21 % кислорода и 0,03—0,04 % углекислого газа, а выдыхаемый воздух содержит 16 % кислорода и 4 % углекислого газа. Кислород поступает из атмосферного воздуха в альвеолярный, а углекислый газ выделяется в обратном направлении. При обмене с капиллярами малого круга кровообращения в альвеолярном воздухе давление кислорода 102 мм рт. ст., а углекислого газа – 40 мм рт. ст., напряжение в венозной крови кислорода – 40 мм рт. ст., а углекислого газа – 50 мм рт. ст. В результате внешнего дыхания от легких оттекает артериальная кровь, богатая кислородом и бедная углекислым газом. Аппарат внешнего дыхания включает три компонента – дыхательные пути, легкие, грудную клетку вместе с мышцами. Дыхательные пути соединяют легкие с окружающей средой. Они начинаются носовыми ходами, затем продолжаются в гортань, трахею, бронхи. В дыхательных движениях участвуют три анатомо-функциональных образования: 1) дыхательные пути, которые по своим свойствам являются слегка растяжимыми, сжимаемыми и создают поток воздуха, особенно в центральной зоне; 2) эластичная и растяжимая легочная ткань; 3) грудная клетка, состоящая из пассивной костно-хрящевой основы, которая объединена соединительнотканными связками и дыхательными мышцами. Грудная клетка относительно ригидна на уровне ребер и подвижна на уровне диафрагмы. Известно два биомеханизма, которые изменяют объем грудной клетки: поднятие и опускание ребер и движения купола диафрагмы; оба биомеханизма осуществляются дыхательными мышцами. Дыхательные мышцы подразделяют на инспираторные и экспираторные. Инспираторными мышцами являются диафрагма, наружные межреберные и межхрящевые мышцы. При спокойном дыхании объем грудной клетки изменяется в основном за счет сокращения диафрагмы и перемещения ее купола. Экспираторными мышцами являются внутренние межреберные и мышцы брюшной стенки, или мышцы живота. Движения ребер. Каждое ребро способно вращаться вокруг оси, проходящей через две точки подвижного соединения с телом я поперечным отростком соответствующего позвонка. Во время вдоха верхние отделы грудной клетки расширяются преимущественно в переднезаднем направлении, так как ось вращения верхних ребер расположена практически поперечно относительно грудной клетки. Нижние отделы грудной клетки больше расширяются преимущественно в боковых направлениях, поскольку оси нижних ребер занимают более сагиттальное положение. Сокращаясь, наружные межреберные и межхрящевые мышцы в фазу инспирации поднимают ребра, напротив, в фазу выдоха ребра опускаются благодаря активности внутренних межреберных мышц. Движения диафрагмы. Диафрагма имеет форму купола, обращенного в сторону грудной полости. Во время спокойного вдоха купол диафрагмы опускается на 1,5—2,0 см, а периферическая мышечная часть несколько отходит от внутренней поверхности грудной клетки, поднимая при этом в боковых направле-ниях нижние три ребра. Во время глубокого дыхания купол диафрагмы может смещаться до 10 см. При вертикальном смещении диафрагмы изменение дыхательного объема составляет в среднем 350 мл*см-1. Если диафрагма парализована, то во время вдоха ее купол смещается вверх, возникает так называемое парадоксальное движение диафрагмы. Движение диафрагмы во время дыхания обусловливает примерно 70—80% вентиляции легких. На функцию внешнего дыхания существенное влияние оказывает брюшная полость, поскольку масса и объем висцеральных органов ограничивают подвижность диафрагмы.

Легочная вентиляция.

Альвеолярная вентиляция. Легочная вентиляция — это процесс передвижения вдыхаемого воздуха в альвеолы, в которых происходит газообмен с кровью.В процессе легочной вентиляции непрерывно обновляется газовый состав альвеолярного воздуха. Величина легочной вентиляции определяется глубиной дыхания, или дыхательным объемом, и частотой дыхательных движений. Во время дыхательных движений легкие человека заполняются вдыхаемым воздухом, объем которого является частью общего объема легких. Для количественного описания легочной вентиляции общую емкость легких разделили на несколько компонентов или объемов. Легочные объемы подразделяют на статические и динамические. Статические легочные объемы измеряют при завершенных дыхательных движениях без лимитирования их скорости. Динамические легочные объемы измеряют при проведении дыхательных движений с ограничением времени на их выполнение. Альвеолярная вентиляция. Обмену О2 и СО2 между атмосферным воздухом и внутренней средой организма способствует непрерывное обновление состава воздуха, заполняющего многочисленные альвеолы легких. Альвеолярная вентиляция является частью общей вентиляции легких, которая достигает альвеол. Альвеолярная вентиляция непосредственно влияет на содержание О2 и СО2 в альвеолярном воздухе и таким образом определяет характер газообмена между кровью и воздухом, заполняющим альвеолы. В каждой альвеоле состав воздуха определяется соотношением многих факторов. Во-первых, на его состав влияет величина анатомического мертвого пространства легких. Во-вторых, распределение воздуха по многочисленным воздухоносным ходам и альвеолам зависит от чисто физических причин. В-третьих, для обмена газов в легких решающее значение имеет соответствие вентиляции альвеол и перфузии легочных капилляров. Альвеолярный воздух представлен смесью в основном О2, СО2 и N2. Кроме того, в альвеолярном воздухе содержатся водяные пары, которые также оказывают определенное парциальное давление. Различное содержание О2 и СО2 в альвеолярном и выдыхаемом из легких воздуха свидетельствует о том, что в воздухоносных путях легких от трахеи до альвеол существуют многочисленные градиенты концентрации дыхательных газов, фронт которых может динамично смещаться в ту или иную сторону в зависимости от вентиляции легких. Альвеолярную вентиляцию за один дыхательный цикл можно рассчитать по формуле: VA=f*(VT-Vd), где f — частота дыхания; Vt — дыхательный объем. В конечном счете величина альвеолярной вентиляции тем ниже, чем выше частота дыхания и меньше дыхательный объем.

53.Газообмен и транспорт газов. В организме газообмен О2 и СО2 через альвеолярно-капиллярную мембрану происходит с помощью диффузии. Диффузия О2 и СО2 через аэрогематический барьер(барьер между альвеолярным воздухом и кровью) зависит от следующих факторов: вентиляции дыхательных путей; смешивания и диффузии газов в альвеолярных протоках и альвеолах; смешивания и диффузии газов через аэрогематический барьер, мембрану эритроцитов и плазму альвеолярных капилляров; химической реакции газов с различными компонентами крови, и наконец от перфузии кровью легочных капилляров. Диффузия газов через альвеолярно-капиллярную мембрану легких осуществляется в два этапа. На первом этапе диффузионный перенос газов происходит по концентрационному градиенту через тонкий аэрогематический барьер, на втором — происходит связывание газов в крови. После преодоления аэрогематического барьера газы диффундируют через плазму крови в эритроциты. Транспорт О2 осуществляется в физически растворенном и химически связанном виде. Физические процессы, т. е. растворение газа, не могут обеспечить запросы организма в О2. Наиболее оптимальным является механизм транспорта О2 в химически связанном виде. Согласно закону Фика, газообмен О2 между альвеолярным воздухом и кровью происходит благодаря наличию концентрационного градиента О2 между этими средами. В альвеолах легких парциальное давление О2 составляет 13,3 кПа, или 100 мм рт.ст., а в притекающей к легким венозной крови парциальное напряжение О2 составляет примерно 5,3 кПа, или 40 мм рт.ст. Транспорт О2 начинается в капиллярах легких после его химического связывания с гемоглобином.

 

 

Функции толстой кишки.

Пища почти полностью переваривается и всасывается в тонкой кишке. Небольшое количество веществ пищи, в том числе клетчатка и пектин, в составе химуса подвергаются гидролизу в толстой кишке. Гидролиз осуществляется ферментами химуса, микроорганизмов и сока толстой кишки. 1)всасывательная, всасываются глюкоза, витамины и аминокислоты, вырабатываемые бактериями кишечной полости, до 95% воды и электролиты. 2)резервуарная- накопление содержимого, всасывание из него ряда веществ, в основном воды, продвижение его, формирование каловых масс и их удаление

 

 

57.Пищеварение в желудке. состав и свойства желудочного сока.Регуляция соковыделения в желудке. Пищеварительными функциями желудка являются депонирование, механическая и химическая обработка пищи и постепенная порционная эвакуация содержимого желудка в кишечник. Пища, находясь в течение нескольких часов в желудке, набухает, разжижается, многие ее компоненты растворяются и подвергаются гид-ролизу ферментами слюны и желудочного сока. Ферменты желудочного сока действуют на белки пищевого содержимого в зоне непосредственного контакта со слизистой оболочкой желудка и на небольшом удалении от нее, куда диффундировал желудочный сок. За сутки желудок человека выделяет 2—2,5 л желудочного сока. Он представляет собой бесцветную прозрачную жидкость, содержащую соляную кислоту (0,3—0,5%) и поэтому имеющую кислую реакцию. вода, хлориды, сульфаты, фосфаты, гидрокарбонаты натрия, калия, кальция, магния, аммиак, органичес-е соед-я. Осмотическое давление желудочного сока выше, чем плазмы крови. Обкладочные клетки продуцируют соляную кислоту. Регуляция желудочной секреции. Вне пищеварения железы желудка выделяют небольшое количество желудочного сока. Прием пищи резко увеличивает его выделение. Это происходит за счет стимуляции желудочных желез нервными и гуморальными механизмами, составляющими единую систему регуляции. Стимулирующие и тормозные регуляторные факторы обеспечивают зависимость сокоотделения желудка от вида принимаемой пищи. Эта зависимость была впервые обнаружена в лаборатории И. П. Павлова в опытах на собаках с изолированным павловским желудочком, которым скармливалась различная пища. Объем и характер секреции во времени, кислотность и содержание в соке пепсинов определяются видом принятой пищи.

 

58.Пищеварение в тонкой кишке. Секреция поджелудочной железы. Кишечная секреция. Полостное и пристеночное пищеварение в тонкой кишке. В обеспечении начального этапа пищеварения большая роль принадлежит процессам, происходящим в двенадцатиперстной кишке. По мере продвижения по двенадцатиперстной кишке пищевое содержимое сме-шивается с поступающими в кишку секретами, ферменты которых уже в двенадцатиперстной кишке осуществляют гидролиз питательных веществ. Особенно велика в этом роль сока поджелудочной железы. Основную массу поджелудочной железы (80—85 %) составляют экзокринные элементы, среди которых 80—95 % приходится на ацинозные (ацинарные) клетки; эти клетки секретируют ферменты (и небольшое количество неферментных белков); центроацинозные и протоковые клетки секретируют воду, электролиты, слизь; из протоков компоненты смешанного секрета частично реабсорбируются. Сок представляет собой бесцветную прозрачную жидкость со средним содержанием воды,щелочная среда.,хлориды натрия и калия,ферменты. Поджелудочная железа синтезирует прокарбоксипептидазы, фосфолипазы,профермент панкриотическую фосфолипазу. Сок богат амилазой, расщепляет полисах до монос-в. Кишечный сок представляет собой мутную, вязкую жидкость, является продуктом деятельности всей слизистой оболочки тонкой кишки, имеет сложный состав и разное происхождение. За сутки у человека выделяется до 2,5 л кишечного сока. При центрифугировании кишечный сок разделяется на жидкую(образована секретом, транспортируемыми из крови растворами неорганических и органических ве-ществ) и плотную части(неразрушенные эпителиальные клетки, их фрагменты). Соотношение между ними изменяется в зависимости от силы и вида раздражений слизистой оболочки тонкой кишки. В тонкой кишке продолжается и завершается гидролиз пептидов. В тонкой кишке различают два вида пищеварения: полостное и пристеночное. Полостное пищеварение происходит с помощью ферментов пищеварительных секретов, поступающих в полость тонкой кишки (поджелудочный сок, желчь, кишечный сок). В результате полостного пищеварения крупномолекулярные вещества (полимеры) гидролизуются в основном до стадии олигомеров. Дальнейший их гидролиз идет в зоне, прилегающей к слизистой оболочке и непосредственно на ней. Пристеночное пищеварение в широком смысле происходит в слое слизистых наложений, на поверхности микроворсинок. Слой слизистых наложений состоит из слизи, продуцируемой слизистой оболочкой тонкой кишки и слущивающегося кишечного эпителия. В этом слое находится много ферментов поджелудочной железы и кишечного сока.

62. Обмен веществ. Обмен белков,жиров,углеводов.Витамины. В результате обмена веществ непрерывно образуются, обновляются и разрушаются клеточные структуры, синтезируются и разрушаются различные химические соединения. В организме динамически уравновешены процессы анаболизма (ассимиляции) — биосинтеза органических веществ, компонентов клеток и тканей, и катаболизма (диссимиляции) — расщепление сложных молекул компонентов клеток. Преобладание анаболических процессов обеспечивает рост, накопление массы тела, преобладание же катаболических процессов ведет к частичному разрушению тканевых структур, уменьшению массы тела. При этом происходит превращение энергии, переход потенциальной энергии химических соединений, освобождаемой при их расщеплении, в кинетическую, в основном тепловую и механическую, частично в электрическую энергию. Обмен белков. Вся совокупность обмена веществ в организме (дыхание, пищеварение, выделение) обеспечивается деятельностью ферментов, которые являются белками. Все двигательные функции организма обеспечиваются взаимодействием сократительных белков — актина и миозина. Поступающий с пищей из внешней среды белок служит пластической и энергетической целям. Пластическое значение белка состоит в восполнении и новообразовании различных структурных компонентов клетки. Энергетическое значение заключается в обеспечении организма энергией, образующейся при расщеплении белков. из 20 входящих в состав белков аминокислот 12 синтезируются в организме — заменимые аминокислоты, а 8 не синтезируются — незаменимые аминокислоты. Без незаменимых аминокислот синтез белка резко нарушается и наступает отрицательный баланс азота, останавливается рост, уменьшается масса тела. Для людей незаменимыми аминокислотами являются лейцин, изолейцин, валин, метионин, лизин, треонин, фенилаланин, триптофан. Обмен липидов. Эта группа веществ важна для пластического и энергетического обмена. Пластическая роль липидов состоит в том, что они входят в состав клеточных мембран и в значительной мере определяют их свойства. Велика энергетическая роль жиров. Их теплотворная способность более чем в два раза превышает таковую углеводов или белков. Большая часть жиров в организме находится в жировой ткани, меньшая часть входит в состав клеточных структур. В жировой ткани жир, находящийся в клетке в виде включений. Жир, всасывающийся из кишечника, поступает преимущественно в лимфу и в меньшем количестве — непосредственно в кровь. Процесс образования, отложения и мобилизации из депо жира регулируется нервной и эндокринной системами, а также тканевыми механизмами и тесно связаны с углеводным обменом. Так, повышение концентрации глюкозы в крови уменьшает распад триглицеридов и активизирует их синтез. Ряд гормонов оказывает выраженное влияние на жировой обмен. Обмен углеводов. Основная роль углеводов определяется их энергетической функцией. Глюкоза крови является непосредственным источником энергии в организме. Быстрота ее распада и окисления, а также возможность быстрого извлечения из депо обеспечивают экстренную мобилизацию энергетических ресурсов при стремительно нарастающих затратах энергии в случаях эмоционального возбуждения, при интенсивных мышечных нагрузках и др. Глюкоза, поступающая в кровь из кишечника, транспортируется в печень, где из нее синтезируется гликоген. При снижении уровня глюкозы в крови до 2,2—1,7 ммоль/л (40— 30 мг%) развиваются судороги, бред, потеря сознания, а также вегетативные реакции: усиленное потоотделение, изменение просвета кожных сосудов и др. Увеличение уровня глюкозы в крови возникает при действии нескольких гормонов(адреналин,глюкокортикоиды,тироксин и трийодтиронин). Витамины. Они находятся в пищевых продуктах в незначительном количестве, но оказывают выраженное влияние на физиологическое состояние организма, часто являясь компонентом молекул ферментов. Источниками витаминов для человека являются пищевые продукты растительного и животного происхождения — в них они находятся или в готовом виде, или в форме провитаминов, из которых в организме образуются витамины. Некоторые витамины синтезируются микрофлорой кишечника. При отсутствии какого-либо витамина или его предшественника возникает патологическое состояние, получившее название авитаминоз, в менее выраженной форме оно наблюдается при недостатке витамина — гиповитаминозе. Отсутствие или недостаток определенного витамина вызывает свойственное лишь отсутствию данного витамина заболевание. Авитаминозы и гиповитаминозы могут возникать не только в случае отсутствия витаминов в пище, но и при нарушении их всасывания при заболеваниях желудочно-кишечного тракта. По растворимости все витамины делят на две группы: водорастворимые (витамины группы В, витамин С и витамин Р) и жирорастворимые (витамины A, D, Е и К).

 

 

63. Методы исследования энергообмена.Основной обмен.Обмен энергии при физическом и умственном труде. Прямая калориметрия. Прямая калориметрия основана на непосредственном учете в биокалориметрах количества тепла, выделенного организмом. Биокалориметр представляет собой герметизированную и хорошо теплоизолированную от внешней среды камеру. В камере по трубкам циркулирует вода. Тепло, выделяемое находящимся в камере человеком или животным, нагревает циркулирующую воду. По количеству протекающей воды и изменению ее температуры рассчитывают количество выделенного организмом тепла. Непрямая калориметрия Наиболее распространен способ Дугласа — Холдейна, при котором в течение 10—15 мин собирают выдыхаемый воздух в мешок из воздухонепроницаемой ткани (мешок Дугласа), укрепляемый на спине обследуемого (рис. 10.3.). Он дышит через загубник, взятый в рот, или резиновую маску, надетую на лицо. В загубнике и маске имеются клапаны, устроенные так, что обследуемый свободно вдыхает атмосферный воздух, а выдыхает воздух в мешок Дугласа. Когда мешок наполнен, измеряют объем выдохнутого воздуха, в котором определяют количество О2 и СО2. Обмен энергии при физическом труде. Мышечная работа значительно увеличивает расход энергии, поэтому суточный расход энергии у здорового человека, проводящего часть суток в движении и физической работе, значительно превышает величину основного обмена. При мышечной работе освобождается тепловая и механическая энергия. Отношение механической энергии ко всей энергии, затраченной на работу, выраженное в процентах, называется коэффициентом полезного действия. При физическом труде человека коэффициент полезного действия колеблется от 16 до 25 % и составляет в среднем 20 %, но в отдельных случаях может быть и выше. Затраты энергии тем больше, чем интенсивнее совершаемая организмом мышечная работа. Обмен энергии при умственном труде. При умственном труде энерготраты значительно ниже, чем при физическом. Трудные математические вычисления, работа с книгой и другие- формы умственного труда, если они не сопровождаются движением, вызывают ничтожное (2—3 %) повышение затраты энергии по сравнению с полным покоем. Однако в большинстве случаев различные виды умственного труда сопровождаются мышечной деятельностью, в особенности при эмоциональном возбуждении работающего (лектор, артист, писатель, оратор и т.д.), поэтому и энерготраты могут быть относительно большими. Пережитое эмоциональное возбуждение может вызвать в течение нескольких последующих дней повышение обмена на 11—19 %. Основной обмен. Для определения присущего данному организму уровня окислительных процессов и энергетических затрат проводят исследование в определенных стандартных условиях. При этом стремятся исключить влияние факторов, которые существенно сказываются на интенсивности энергетических затрат, а именно мышечную работу, прием пищи, влияние температуры окружающей среды. Энерготраты организма в таких стандартных условиях получили название основного обмена. Энерготраты в условиях основного обмена связаны с поддержанием минимально необходимого для жизни клеток уровня окислительных процессов и с деятельностью постоянно работающих органов и систем — дыхательной мускулатуры, сердца, почек, печени.

 

66.Почки и их функции. Строение и кровоснабжение нефрона. Основное назначение органов выделения состоит в поддержании постоянства состава и объема жидкостей внутренней среды организма, прежде всего крови. Почки удаляют избыток воды, неорганических и органических веществ, конечные продукты обмена и чужеродные вещества. функции почки и процессы, их обеспечивающие. К последним относятся ультрафильтрация жидкости в клубочках, реабсорбция и секреция веществ в канальцах, синтез новых соединений, в том числе и биологически активных веществ. Секреторная - синтез и секреция клетками в почке биологически активных веществ (например, ренина), процесс синтеза в клетках канальцев веществ, которые поступают в просвет канальца и экскретируются с мочой. Строение нефрона. В каждой почке у человека содержится около 1 млн функциональных единиц — нефронов, в которых происходит образование мочи. Каждый нефрон начинается почечным, или мальпигиевым, тельцем — двустенной капсулой клубочка (капсула Шумлянского—Боумена), внутри которой находится клубочек капилляров. Внутренняя поверхность капсулы выстлана эпителиальными клетками; образующаяся полость между висцеральным и париетальным листками капсулы переходит в просвет проксимального извитого канальца. Следующий отдел нефрона — тонкая нисходящая часть петли нефрона (петли Генле). Ее стенка образована низкими, плоскими эпителиальными клетками. Нисходящая часть петли может опускаться глубоко в мозговое вещество, где каналец изгибается на 180°, и поворачивает в сторону коркового вещества почки, образуя восходящую часть петли нефрона. Она может включать тонкую и всегда имеет толстую восходящую часть, которая поднимается до уровня клубочка своего же нефрона, где начинается дистальный извитой каналец. Конечный отдел нефрона — короткий связующий каналец, впадает в собирательную трубку1. Начинаясь в корковом веществе почки, собирательные трубки проходят через мозговое вещество и открываются в полость почечной лоханки. Короткие почечные артерии отходят от брюшного отдела аорты, разветвляются в почке на все более мелкие сосуды, и одна приносящая (афферентная) артериола входит в клубочек. Здесь она распадается на капиллярные петли, которые, сливаясь, образуют выносящую (эфферентную) артериолу, по которой кровь оттекает от клубочка. Вскоре после отхождения от клубочка эфферентная артериола вновь распадается на капилляры, образуя густую сеть вокруг проксимальных и дистальных извитых канальцев. Таким образом, большая часть крови в почке дважды проходит через капилляры — вначале в клубочке, затем у канальцев.

 

Неспецифическая резистентность и иммунитет.

Основное назначение лейкоцитов — участие в защитных реакциях организма против чужеродных агентов, способных нанести ему вред. Различают специфическую защиту, или иммунитет, и неспе­цифическую резистентность организма. Последняя, в отличие от иммунитета, направлена на уничтожение любого чужеродного агента. К неспецифической резистентности относятся фагоцитоз и пиноцитоз, система комплемента, естественная цитотоксичность, действие интерферонов лизоцима, β-лизинов и других гуморальных факторов защиты. Фагоцитоз. Это поглощение чужеродных частиц или клеток и их дальнейшее уничтожение. Явление фагоцитоза открыто И. И. Мечниковым. Фагоцитоз присущ нейтрофилам, эозинофилам, моно­цитам и макрофагам.И. И. Мечников выделил следующие стадии фагоцитоза: 1) при­ближение фагоцита к фагоцитируемому объекту, или лиганду; 2) контакт лиганда с мембраной фагоцита; 3) поглощение лиганда; 4) переваривание или уничтожение фагоцитированного объекта. Фагоцит может улавливать отдаленные сигналы (хемотаксис) и мигрировать в их направлении (хемокинез). Хотя сотни продуктов метаболизма влияют на подвижность лейкоцитов, их действие про­является лишь в присутствии особых соединений — хемоаттрактантов. К хемоаттрактантам относят продукты распада соединительной ткани, иммуноглобулинов, фрагменты активных компонентов ком­племента, некоторые факторы свертывания крови и фибринолиза, простагландины, лейкотриены, лимфокины и монокины. Благодаря хемотаксису, фагоцит целенаправленно движется в сторону повреждающего агента. Чем выше концентрация хемоаттрактанта, тем большее число фагоцитов устремляется в зону повреждения и тем с большей скоростью они движутся. Для взаимодействия с хемоаттрактантом у фагоцита имеются специфические гликопротеиновые образования — рецепторы. Система комплемента. Комплемент — ферментная система, со­стоящая более чем из 20 белков, играющая важную роль в осуще­ствлении защитных реакций, течении воспаления и разрушения (лизиса) мембран бактерий и различных клеток. При активации системы комплемента усиливается разрушение чужеродных и старых клеток, активируются фагоцитоз и течение иммунных реакций, повышается проницаемость сосудистой стенки, ускоряется свертывание крови, что в конечном итоге приводит к более быстрой ликвидации патологического процесса. Иммунитет. Это комплекс реакций, направленных на поддер­жание гомеостаза при встрече организма с агентами, которые рас­цениваются как чужеродные независимо от того, образуются ли они в самом организме или поступают в него извне. Чужеродные для данного организма соединения, способные вы­зывать иммунный ответ, получили наименование «антигены» (АГ). Теоретически любая молекула может быть АГ. В результате действия АГ в организме образуются антитела (AT), сенсиби­лизируются (активируются) лимфоциты, благодаря чему они при­обретают способность принимать участие в иммунном ответе. Спе­цифичность АГ заключается в том, что он избирательно реагирует с определенными AT или лимфоцитами, появляющимися после по­падания АГ в организм. Способность АГ вызывать специфический иммунный ответ обус­ловлена наличием на его молекуле многочисленных детерминант (эпитопов), к которым специфически, как ключ к замку, подходят активные центры (антидетерминанты) образующихся AT. АГ, вза­имодействуя со своими AT, образуют иммунные комплексы (ИК ). Органы, принимающие участие в иммунитете, делят на четыре группы: 1 Центральные — тимус, или вилочковая железа, и, по-види­мому, костный мозг.2. Периферические, или вторичные, — лимфатические узлы, селезенка, система лимфоэпителиальных образований, расположен­ных в слизистых оболочках различных органов.3. Забарьерные — ЦНС, семенники, глаза, паренхима тимуса и при беременности — плод.4. Внутрибарьерные — кожа. Различают клеточный и гуморальный иммунитет. Клеточный иммунитет направлен на уничтожение чужеродных клеток и тканей и обусловлен действием Т-киллеров. Типичным примером клеточного иммунитета является реакция отторжения чужеродных органов и тканей, в частности кожи, пересаженной от человека человеку. Гуморальный иммунитет обеспечивается образованием AT и обусловлен в основном функцией В-лимфоцитов.

 

35 Иммунный ответ. В иммунном ответе принимают участие иммунокомпетентные клетки, которые могут быть разделены на антигенпрезентирующие (представляющие АГ), регуляторные (регу­лирующие течение иммунных реакций) и эффекторы иммунного ответа (осуществляющие заключительный этап в борьбе с АГ). К антигенпрезентирующим клеткам относятся моно­циты и макрофаги, эндотелиальные клетки, пигментные клетки кожи (клетки Лангерганса) и др. К регуляторным клеткам относятся Т- и В-хелперы, супрессоры, контрсупрессоры, Т-лимфоциты па­мяти. Наконец, к эффекторам иммунного ответа при­надлежат Т- и В-киллеры и В-лимфоциты, являющиеся в основном антителопродуцентами. Гуморальный иммунный ответ обеспечивается AT, или иммуноглобулинами. У человека различают пять основных классов иммуноглобулинов: IgA, IgG, IgM, IgE, IgD. Все они имеют как общие, так и специфические детерминанты. Регуляция иммунитета. Интенсивность иммунного ответа во мно­гом определяется состоянием нервной и эндокринной систем. Уста­новлено, что раздражение различных подкорковых структур (таламус, гипоталамус, серый бугор) может сопровождаться как усиле­нием, так и торможением иммунной реакции на введение антигенов. Показано, что возбуждение симпатического отдела автономной (ве­гетативной) нервной системы, как и введение адреналина, усиливает фагоцитоз и интенсивность иммунного ответа. Повышение тонуса парасимпатического отдела вегетативной нервной системы приводит к противоположным реакциям.

36 вопрос.Группы крови. С открытием венским врачом К. Ландштейнером (1901) групп крови стало понятно, почему в одних случаях трансфузии крови проходят успешно, а в других заканчиваются трагически для боль­ного. К. Ландштейнер впервые обнаружил, что плазма, или сыво­ротка, одних людей способна агглютинировать (склеивать) эритро­циты других людей. Это явление получило наименование изогемагглютинации. В основе ее лежит наличие в эритроцитах антигенов, названных агглютиногенами и обозначаемых буквами А и В, а в плазме — природных антител, или агглютининов, именуемых α и β. Агглютинация эритроцитов наблюдается лишь в том случае, если встречаются одноименные агглютиноген и агглютинин: А и α, В и β. Установлено, что агглютинины, являясь природными антителами (AT), имеют два центра связывания, а потому одна молекула агг­лютинина способна образовать мостик между двумя эритроцитами. При этом каждый из эритроцитов может при участии агглютининов связаться с соседним, благодаря чему возникает конгломерат (агглютинат) эритроцитов. В крови одного и того же человека не может быть одноименных агглютиногенов и агглютининов, так как в противном случае про­исходило бы массовое склеивание эритроцитов, что несовместимо с жизнью. Деление по группам крови системы АВ0 основано на комбинациях агглютиногенов эритроцитов и агглютининов плазмы. Возможны только четыре комбинации, при которых не встречаются одноименные агглютиногены и агглютинины, или че­тыре группы крови: I —агглютиногенов нет,агглютинины - αβ, II —агглютиноген A,агглютинин β, III — агглютиноген В,агглютин α, IV — только агглютиногены АВ,агглютининов нет. Кроме агглютининов, в плазме, или сыворотке, крови содержатся гемолизины: их также два вида и они обозначаются, как и агглю­тинины, буквами α и β. При встрече одноименных агглютиногена и гемолизина наступает гемолиз эритроцитов. Для определения группы крови используют стандартные гемагглютинирующие сыворотки I, II, III, IV групп двух серий с разным титром антител.При смешивании крови с сыворотками происходит реакция агглютинации или она отсутствует. Наличие агглютинации эритроцитов указывает на наличие в эритроцитах агглютиногена, одноименного агглютинину в данной сыворотке. Отсутствие агглютинации эритроцитов указывает на отсутствие в эритроцитах агглютиногена, одноименного агглютинину данной сыворотки.



Поделиться:


Последнее изменение этой страницы: 2017-02-21; просмотров: 283; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.251.155 (0.026 с.)