Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Эффективность теплового двигателя

Поиск

Эффективность теплового двигателя, действующего между двумя энергетическими уровнями, определена в пересчете на абсолютные температуры

η = (Th - Tc) / Th = 1 - Tc / Th

где

η = эффективность

Th = верхняя граница температуры (K)

Tc = нижняя граница температуры (K)

Для того, чтобы достичь максимальной эффективности Tc должна быть на столько низкой, на сколько это возможно. Чтобы эффект был 100% -м, Tc должна равнятся 0 по шкале Kельвина. Практически это невозможно, поэтому эффективность всегда меньше 1 (менее 100%).

  • Изменение энтропии > 0
    Необратимый
    процесс
  • Изменение энтропии= 0
    Двусторонний
    процесс (обратимый)
  • Изменение энтропии < 0
    Невозможный
    процесс (неосуществимый)

Энтропия определяет относительную способность одной системы влиять на другую. Когда энергия двигается к нижнему энергетическому уровню, где уменьшается возможность влияния на окружающую среду, энтропия увеличивается.

 

Энтропия как параметр состояния термодинамической системы Второй закон термодинамики. Энтропия.

Второй закон связан с понятием энтропии, являющейся мерой хаоса (или мерой порядка). Второй закон термодинамики гласит, что для вселенной в целом энтропия возрастает.

Существует два классических определения второго закона термодинамики:

  • Кельвина и Планка

Не существует циклического процесса, который извлекает количество теплоты из резервуара при определенной температуре и полностью превращает эту теплоту в работу. (Невозможно построить периодически действующую машину, которая не производит ничего другого, кроме поднятия груза и охлаждения резервуара теплоты)

  • Клаузиуса

Не существует процесса, единственным результатом которого является передача количества теплоты от менее нагретого тела к более нагретому. (Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара)

Оба определения второго закона термодинамики опираются на первый закон термодинамики, утверждающий, что энергия убывает.

Второй закон связан с понятием энтропии (S).

Энтропия порождается всеми процессами, она связана с потерей системы способности совершать работу. Рост энтропии - стихийный процесс. Если объем и энергия системы постоянны, то любое измение в системе увеличивает энтропию. Если же объем или энергия системы меняются, энтропия системы уменьшается. Однако, энтропия вселенной при этом не уменьшается.

Для того, чтобы энергию можно было использовать, в системе должны быть области с высоким и низким уровнями энергии. Полезная работа производится в результате передачи энергии от области с высоким уровнем энергии к области с низким уровнем энергии.

  • 100% энергии не может быть преобразовано в работу
  • Энтропия может вырабатываться, но не может быть уничтожена

Эффективность теплового двигателя

Эффективность теплового двигателя, действующего между двумя энергетическими уровнями, определена в пересчете на абсолютные температуры

η = (Th - Tc) / Th = 1 - Tc / Th

где

η = эффективность

Th = верхняя граница температуры (K)

Tc = нижняя граница температуры (K)

Для того, чтобы достичь максимальной эффективности Tc должна быть на столько низкой, на сколько это возможно. Чтобы эффект был 100% -м, Tc должна равнятся 0 по шкале Kельвина. Практически это невозможно, поэтому эффективность всегда меньше 1 (менее 100%).

  • Изменение энтропии > 0
    Необратимый
    процесс
  • Изменение энтропии= 0
    Двусторонний
    процесс (обратимый)
  • Изменение энтропии < 0
    Невозможный
    процесс (неосуществимый)

Энтропия определяет относительную способность одной системы влиять на другую. Когда энергия двигается к нижнему энергетическому уровню, где уменьшается возможность влияния на окружающую среду, энтропия увеличивается.

Определение энтропии

Энтропия определяется как:

S = H / T

где

S = энтропия (кДж/кг*К)

H = энтальпия (кДж/кг)

T = абсолютная температура (K)

Изменение энтропии системы вызвано изменением содержания темпла в ней. Изменение энтропии равно изменению темпла системы деленной на среднюю абсолютную температуру (Ta):

dS = dH / Ta

Сумма значений (H / T) для каждого полного цикла Карно равна 0. Это происходит из-за того, что каждому положительному H противостоит отрицательное значение H.

  • Тепловой цикл Карно

Цикл Карно— идеальный термодинамический цикл.


В тепловом двигателе, газ (реверсивно) нагревается (reversibly heated), а затем охлаждается. Модель цика следующая: Положение 1 --(изотермическое расширение) --> Положение 2 --(адиабатическое расширение) --> Положение 3 --(изотермическое сжатие) --> Положение 4 --(адиабатическое сжатие) --> Положение 1

Положение 1 - Положение 2: Изотермическое расширение
Изотермическое расширение. В начале процесса рабочее тело имеет температуру Th, то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты QH. При этом объём рабочего тела увеличивается. QH=∫Tds=Th (S2-S1) =Th ΔS
Положение 2 - Положение 3: Адиабатическое расширение
Адиабатическое (изоэнтропическое) расширение. Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом его температура уменьшается до температуры холодильника.
Положение 3 - Положение 4: Изотермическое сжатие
Изотермическое сжатие. Рабочее тело, имеющее к тому времени температуру Tc, приводится в контакт с холодильником и начинает изотермически сжиматься, отдавая холодильнику количество теплоты Qc. Qc=Tc(S2-S1)=Tc ΔS
Положение 4 - Положение 1: Адиабатическое сжатие
Адиабатическое (изоэнтропическое) сжатие. Рабочее тело отсоединяется от холодильника и сжимается без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя.

При изотермических процессах температура остаётся постоянной, при адиабатических отсутствует теплообмен, а значит, сохраняется энтропия.

Поэтому цикл Карно удобно представить в координатах T и S (температура и энтропия).

Законы термодинамики были определены эмперическим путем (эксперементально). Второй закон термодинамики - это обощение экспериментов, связанных с энтропией. Известно, что dS системы плюс dS окружающей среды равно или больше 0.

  • Энтропия адиабатически изолированной системы не меняется!

Пример - Энтропия при нагревании воды

Процесс нагревания 1 кг воды от 0 до 100oC (273 до 373 K) при нормальных условиях.

Удельная энтальпия для воды при 0oC = 0 кДж/кг (удельная - на единицу массы)

Удельная энтальпия для воды при 100oC = 419 кДж/кг

Изменение удельной энтропии:

dS = dH / Ta

= ((419 кДж/кг) - (0 кДж/кг)) / ((273 К + 373 К)/2)

= 1.297 кДж/кг*К

Пример - Энтропия при испарении воды

Процесс превращения 1 кг воды при 100oC (373 K) в насыщенный пар при 100oC (373 K) при нормальных условиях.

Удельная энтальпия пара при 100oC (373 K) до испарения = 0 кДж/кг

Удельная теплота парообразования 100oC (373 K) при испарении = 2 258 кДж/кг

Изменение удельной энтропии:

dS = dH / Ta

= (2 258 - 0) / ((373 + 373)/2)

= 6.054 кДж/кг*К

Полное изменение удельной энтропии испарения воды - это сумма удельной энтропии воды (при 0oC) плюс удельная энтропия пара (при температуре 100oC).

 

Состав теплового баланса падающего на Землю солнечного излучения и расхода этой энергии нем поверхность Земли непрерывно нагревается лучами Солнца. Измерениями было установлено, что вблизи поверхности Земли 1 квадратный метр поверхности, поглощающей все падающие на нее лучи, получает при перпендикулярном падении лучей около 700 джоулей энергии в секунду. Атмосфера задерживает часть солнечных лучей. Солнечный свет рассеивается газами атмосферы, частицами пыли, капельками воды, а также поглощается озоном (в верхних слоях атмосферы), водяным паром, углекислотой, кислородом и пылью. Особенно сильно поглощается ультрафиолетовая часть спектра, излучаемого Солнцем. Поэтому по мере поднятия над поверхностью Земли интенсивность радиации, получаемой от Солнца, возрастает, и в ее составе появляется все большее количество ультрафиолетовых лучей.

На границе атмосферы интенсивность радиации составляет 1400 джоулей на квадратный метр в секунду (1,4 кВт/м2). Эту величину называют солнечной постоянной. Количество энергии, поступающей на Землю от Солнца, в десятки тысяч раз больше, чем человечество расходует для приготовления пищи, отопления жилищ, работы двигателей и т. п. Растения также используют лишь небольшую часть этой энергии (около 1 %), запасая ее в виде внутренней энергии веществ, входящих в состав зеленых частей растения. Не вся энергия, идущая от Солнца, поглощается поверхностью Земли. Значительная ее часть (около 42%) отражается облаками и поверхностью Земли, а также рассеивается атмосферой. Около 15% поглощается атмосферой и лишь 43% поглощается поверхностью Земли.

Энергия, поглощенная поверхностью Земли, расходуется на излучение, нагревание воздуха, почвы и водных поверхностей и на испарение. С необъятных водных просторов океанов, а также и с суши за год испаряется свыше 500 000 км3 воды, т. е. количество воды, почти равное количеству воды в Черном море. На испарение затрачивается немного меньше половины всей поглощенной земной поверхностью энергии солнечных лучей. В дальнейшем, при конденсации испарившейся воды, такое же количество теплоты, которое было затрачено при испарении, выделяется в атмосферу. Это нагревает атмосферу и предохраняет ее таким образом от слишком резких понижений температуры. Далеко не всегда конденсация водяного пара происходит там же, где образуется пар. Часто пар переносится ветром на большие расстояния, и конденсация происходит в районах, более холодных, чем те, где происходило испарение. Этот процесс, так же как и процесс переноса воздушными течениями теплоты, полученной ими от нагретых поверхностей, приводит к смягчению климатических условий в холодных районах.

Вследствие малой теплопроводности почвы тепло, затрачиваемое на нагревание почвы, распространяется очень неглубоко — на глубину не более 25 м. Вследствие того, что распространение тепла происходит очень медленно, наиболее высокие температуры в глубине почвы наблюдаются не в то время, когда они были отмечены на поверхности почвы, а несколько позднее. Так, например, на глубине 2 м максимум температуры наступает не в июле, как на поверхности почвы, а в августе. В морях, благодаря перемешиванию воды при волнении, тепло проникает на большие глубины (сотни метров). Часть полученного от Солнца тепла поверхность Земли теряет посредством излучения. Но благодаря тому, что в атмосфере есть водяной пар, это излучение частично снова поглощается атмосферой, что уменьшает потерю тепла Землей.

Как же происходит, что атмосфера может пропускать лучи, идущие от Солнца, и задерживать излучение Земли? В состав излучения Солнца входят как видимые лучи, действующие на наш глаз и называемые светом, так и невидимые (ультрафиолетовые и инфракрасные). Земля, как и всякое другое тело, температура которого ниже 500 °С, излучает в заметном количестве только инфракрасные лучи. Земля излучает, конечно, и днем и ночью, но днем тепловое действие излучения незаметно, так как потеря теплоты за счет излучения полностью перекрывается количеством теплоты, получаемым при поглощении лучей Солнца. Ночью

охлаждение земной поверхности благодаря излучению хорошо заметно. Особенно сильно охлаждаются вследствие излучения шероховатые темные поверхности, например вспаханная земля, земля, покрытая травой, и т. д. Водяной пар обладает особенностью, имеющей важное значение в рассматриваемом явлении. Он гораздо сильнее поглощает инфракрасные лучи, чем видимые. Поэтому земная атмосфера является своеобразной ловушкой для энергии солнечных лучей. Видимые лучи, энергия которых составляет значительную часть солнечного излучения (около 40%), свободно проникают сквозь атмосферу и поглощаются земной поверхностью. За счет поглощенной энергии земная поверхность излучает инфракрасные лучи, которые поглощаются водяным паром и нагревают атмосферу. Если бы этого не было, то средняя температура поверхности Земли составляла бы не 15 °С, как это имеет место на самом деле, а была бы значительно ниже нуля. В этом смысле действие водяного пара сходно с действием стекол, служащих для закрывания парников

 

 

 

 



Поделиться:


Последнее изменение этой страницы: 2017-02-21; просмотров: 312; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.83.202 (0.009 с.)