Вектори. Лінійні операції над векторами 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вектори. Лінійні операції над векторами



Приклади для самостійного розв’язання

  1. За даними векторами і побудувати такі вектори: 1) ; 2) ; 3)

 

  1. У паралелограмі АВСD задані вектори , . Виразити через вектори .

 

  1. У трикутнику АВС проведені медіани АК, ВL і СМ. Визначити вектори через вектори .

 

  1. У трикутнику АВС сторона АВ розділена точками D і F на три рівні відрізки: AD = DF = FB. Знайти вектори , якщо .

 

  1. У трикутнику АВС проведені медіани AD, BE і CF. Довести, що

 

Відповіді. 2.

3. ;

4.

 

Розклад даного вектора за напрямками на прямій, на площині і в просторі

Означення. Вектор (1) називається лінійною комбінацією векторів , де -деякі числові множники.

У виразі (1) вектор отримано в результаті лінійних операцій над векторами . Іноді говорять, що вектор лінійно виражається через вектори . Вираз (1) називають також розкладом вектора по системі векторів .

В необхідності розкладу вектора за даними напрямками можна переконатись на такому прикладі.

Дві опори (рис. 9) утримують вантаж під дією сили земного тяжіння . Необхідно знайти зусилля на кожну з опор.

 

Рис. 9

Для розв’язання задачі розкладемо вектор за правилом паралелограма на складові і , = + , які напрямлені вздовж опор. Величини зусиль можна знайти за допомого теореми синусів, розглядаючи паралелограм АВСО, в якому відома діагональ і кути і , які вона утворює зі сторонами ОВ і ОС.

Пропонуємо самостійно переконатись, що

Тепер перейдемо до лінійного вираження вектора за напрямками в більш загальній формі: на прямій, на площині в просторі.

1. Нехай дано два ненульові колініарні вектори , . Тоді існує число таке, що

Дійсно, можна знайти як відношення . Якщо вектори однаково напрямлені, , то число буде додатним, >0, і якщо , то <0.

2. Нехай на площині задані два неколініарні вектори , ½½ , і вектор , що належить цій же площині. Знайти розклад вектора за напрямками векторів (рис. 10).

Рис. 10

 

Побудуємо паралелограм ОВАС, діагональ якого вектор , а сторони ОВ і ОС розміщені на напрямках векторів . Тоді

Але , тоді за аналогією з (1) існує число таке, що . Так само .

Отже,

Коефіцієнти розкладу називаються координатами вектора в системі векторів .

3. Нехай в просторі задано три некомпланарні вектори зведені до спільної точки О і вектор . Тоді має місце розклад:

де - деякі числа, називаються координатами вектора в системі векторов (рис. 11).

Рис. 11

 

Для доведення (3) проведемо з точки А (кінець вектора ) пряму до перетину з площиною векторів в точці М. Далі, проведемо до перетину з напрямком в точці . ОМАD - паралелограм. Для вектора маємо

 

.

Вектор компланарний з , тому згідно (2) існують числа такі, що

Крім того, , тому за аналогією з (1) існує число таке, що . Остаточно отримуємо рівність (3).

P(0,3,5), Q(9,-3,-1).

2.7. Кут між векторами. Проекція вектора на вісь. Властивості проекцій

 

1. Кут між векторами. Нехай задані ненульові вектори . Зведемо ці вектори до спільної точки О і в напрямках векторів проведемо з точки О промені (див. рис. 15).

Менший з кутів, які утворені цими променями називається кутом між векторами і позначається .

Кут між вектором і нульовим вектором не означається.

Очевидно, що якщо , то ; Якщо ж то .

Вправи. 1). Знайти , , .

2). Нехай . Знайти .

 

Рис. 15

 

3). Розглянемо рівнобедренний прямокутний трикутник АВС, де . Знайти

Відповіді:

2. Проєкцію вектора на вісь (позначається ) називається довжина відрізка, який сполучає проекції на цю вісь початку і кінця вектора, взята зі знаком «+», якщо кут між вектором і віссю гострий і знаком «-», якщо цей кут тупий (рис. 16).

Очевидно, що коли , то =0, і навпаки.

Основні властивості проекцій:

1. = (рис. 16);

2. = (рис. 17);

3. = + (рис. 18).

Властивість 3 виконується для суми скінченного числа векторів.

Скалярний добуток векторів

 

Означення. Скалярним добутком двох векторів (позначається ) називається число рівне добуткові модулів цих векторів, помноженому на косинус кута між ними:

. (1)

На основі властивості 1 проекцїї вектора рівність (1) запишеться:

(2)

У фізиці робота А сталої сили при прямолінійному переміщенні вздовж вектора шляху знаходиться як скалярний добуток цих векторів:

Основні властивості скалярного добутку.

Скалярний добуток комутативний

.

Випливає із (1).

Числовий множник можна виносити за знак скалярного добутку:

.

Для довільних векторів

.

Скалярний добуток двох векторів дорівнює нулю () тоді і тільки тоді, коли один із них є нульовим вектором, або коли ці вектори перпендикулярні .

Таблиця скалярного множення ортів. Згідно означення (1) , аналогічно , а за властивістю (4) .

Отже, скалярний добуток одноіменних ортів дорівнює одиниці, а різноіменних - 0.

Скалярний добуток векторів в координатній формі. Якщо , то .

Дійсно, за допомогою властивостей маємо

Оскільки добуток одноіменних ортів дорівнює 1, а різноіменних – 0, то отримуємо формулу скалярного добутку у координатній формі:

. (3)

Приклад 1. Знайти скалярний добуток векторів і .

Розв’язання: За формулою (3) маємо:

.

Приклад 2. Задані точки А(3,2,3), В(1,-4,3), С(-4,5,1). Знайти скалярний добуток векторів .

Розв’язання. Спочатку знайдемо вектори

За формулою (3) маємо

.

Довжина вектора. Якщо в (1) , то

Відстань між двома точками. і знаходиться як довжина вектора за формулою (4):

Косинус кута між двома векторами отримаємо із формули (1) із врахуванням (3) і (4):

Приклад 3. Задані точки . Для паралелограма, побудованого на векторах і обчислити: 1)довжини сторін, тобто і ; 2) косинус та синус, кута ; 3) площу.

Розв’язання. Знаходимо вектори тоді: 1) , . 2) (кут - тупий), . 3)

.

Приклад 4. Знайти модуль вектора , якщо

.

Розв’язання. За формулою (4) . Знаходимо

,

тоді .

 

Умова перпендикулярності двох ненульових векторів випливає із властивості 4° і формули (3)

Проекція вектора на вектор знаходиться із врахуванням (3) і (4):

Теорема. Декартові прямокутні координати вектора в базисі є його проекціями на відповідні осі координат.

Дійсно, згідно з (9) маємо

Напрямними косинусами вектора називаються косинуси кутів , утворених між вектором та координатними осями ОХ, ОУ, ОZ (див. рис. 19)

Приклад. Знайти напрямні косинуси вектора та значення виразу .

Розв’язання.

.

Рис. 19

Легко перевірити, що для довільного вектора

Напрямні косинуси вектора повністю визначають напрямок вектора і є координатами одиничного вектора , що збігається за напрямком з , тобто:

Таблиця векторного множення ортів.

 

 

Векторний добуток одноіменних ортів дорівнює . При найкоротшому повороті від одного орта до іншого проти годинникової стрілки отримуємо третій орт, за годинниковою стрілкою - третій орт із знаком «-».

Формули векторного добутку в координатній формі отримуємо із врахуванням таблиці векторного добутку ортів

 

Приклад 1. Знайти векторний добуток векторів =(1,3,-1) і =(0,2,1). Побудувати в системі координат вектори , і .

Розв’язання. Зауважимо, що визначник (1) зручніше обчислювати, застосувавши теорему про розклад (див. І, 1.4) за елементами першого рядка:

Тепер побудуємо вектори за їх координатами.

З рисунка видно, що положення знайденого вектора відповідає означенню векторного добутку .

Приклад 2. Знайти площу трикутника АВС, якщо

А(1,-2,-1), В(2,3,1), С(0,1,4).

Розв’язання. Знаходимо вектори

і їх векторний добуток:

Довжина отриманого вектора за означенням чисельно дорівнює площі паралелограма, побудованого на даних векторах. Тому

.

а площа АВС складає половину знайденої площі, тобто


Вектори. Лінійні операції над векторами

1. Скалярні і векторні величини. Величина, для характеристики якої досить її числового значення у відповідних одиницях вимірювання, називається скалярною. Прикладами скалярних величин є маса, температура, довжина, площа, об’єм, кількість тепла і т.п.

Величина, для характеристики якої крім числового значення вказується ще і напрямок в просторі, називається векторною. Наприклад: сила, швидкість, прискорення, напруженість поля (електростатичного, магнітного, електромагнітного) і т.п.

Геометричним зображенням векторної величини в заданому масштабі є вектор.

Вектором називається відрізок заданої довжини і вказаним напрямком в просторі, тобто направлений відрізок.

В

 

 

А

Рис. 1

 

На рис. 1 А - початкова точка вектора, В - кінець вектора, вектор позначають . Для зручності запису замість символа «» над вектором будемо писати «—». Іноді вектор позначають однією буквою: . Відстань від точки А до точки В називають довжиною або модулем вектора і позначають або .

Якщо початок і кінець вектора збігаються, то такий вектор називається нульовим і позначають . Напрямок нульового вектора може бути довільним.

Два ненульові вектори, що лежать на паралельних прямих або на одній прямій називають колінеарними, позначається . Нульовий вектор вважається колінеарним довільному вектору.

Вектори паралельні одній і тій же площині, або ті що лежать в одній площині називаються компланарними.

Рівними називаються два вектори, якщо вони задовольняють умови:

1) вони колінеарні,

2) їх модулі рівні,

3) вони направлені в одну сторону, тобто

Наприклад, на рис. 2, де АВСD - паралелограм,

Рис. 2

вектори

Якщо , то вектори - протилежні. Вектор протилежний вектору позначають . Вектор протилежний вектору і записують = .

З означення рівності векторів випливає, що вектор можна переносити в просторі паралельно самому собі, такі вектори називають вільними.

Вектор, модуль якого дорівнює одиниці називається одиничним вектором, або ортом, і позначається :

.

2. Лінійні операції над векторами. До них відносяться додавання векторів та множення вектора на число (скаляр).

Додавання векторів. Нехай задані два вектори . Відкладемо з деякої точки О вектор , а тоді з точки А відкладемо вектор і розглянемо вектор .

 

 

Рис. 3

Сумою двох векторів і називається вектор , початок якого знаходиться в початку вектора , а кінець - в кінці вектора за умови, що початок початок знаходиться в кінці .

Згідно рис. 3 вектор замикає ламану OAB, напрямок вектора береться в кінець останнього доданка .

За принципом замикання знаходиться сума більшого числа доданків.

Рис. 4

.

Різниця векторів. Помістимо початки векторів і в одну точку О, і побудуємо замикаючий вектор (рис. 5).

Рис.5

 

Різницею двох векторів і , що виходять з однієї точки, називається замикаючий вектор (позначається ), напрямок якого вибирається в сторону заменшуваного.

Множення вектора на число. Добутком ненульового вектора на число називається вектор , (позначається = ), колінеарний вектору ,модуль якого .

Напрямок вектора збігається з напрямком вектора , якщо >0, і протилежний напрямку вектора , якщо <0, тобто

При = 0, або = ввжається, що - нульовий вектор.

 

Рис. 6

 

3. Властивості лінійних операцій над векторами.

Рис. 7

 

 

Властивість 1, що називається переставною або комутативною, зрозуміла з рис. 7, дозволяє додавати вектори за правилом паралелограма.

- асоціативна або сполучна властивість (див. рис. 8).

 

Рис. 8

Властивості 3 - 8 пропонуємо перевірити самостійно.

Приклад 1. За даними векторами і побудувати вектори:

а ) .

Розв’язання. Див. на рис. а) і б)

 

 

Приклад 2. У трикутнику АВС проведена медіана АМ див. на рис. Виразити вектор через вектори і .

 

Розв’язання. За означенням різниці векторів , тоді

За означенням суми векторів із ∆ АВМ маємо

 



Поделиться:


Последнее изменение этой страницы: 2017-02-16; просмотров: 441; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.136.170 (0.141 с.)