Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Филиал фгбоу впо «мгуту им. К. Г. Разумовского» в Г. МелеузеСодержание книги
Поиск на нашем сайте Филиал ФГБОУ ВПО «МГУТУ им. К.Г. Разумовского» в г. Мелеузе Кафедра «Системы управления»
Отчет по учебной практике на________________________________________________________________ (предприятие) студента_____ ____________________________ ___ ______________________ (Ф.И.О) шифр______ _______________________________________________________ Руководитель практики от предприятия____________________________________________________ (Ф.И.О) Руководитель практики от МГУТУ_______________ __________________________________ _______ (Ф.И.О) Оценка____________ Дата______________
Мелеуз 2012
Содержание
Введение
Повышение производительности труда базируется на механизации и автоматизации производства. Механизация – замена ручных средств труда машинами и механизмами. С их помощью человек может поднимать и перемещать тяжелые грузы, резать, ковать и штамповать металл при изготовлении деталей, добывать руду и топливо из недр земли. Но управление этими механизмами осуществляется человеком: он должен постоянно контролировать ход производственного процесса, анализировать его, принимать решения и воздействовать на этот процесс. Например, рабочий при обработке детали на станке должен измерять размеры детали, определять ее качество, т.е. получать информацию путем измерений. В зависимости от результатов измерений рабочий изменяет скорость резания, величину подачи инструмента, т.е. принимает и исполняет решение. Таким образом, при механизации требуется постоянное участие человека во всем ходе производственного процесса. Автоматизация производственных процессов – применение технических средств и систем управления, освобождающих человека частично или полностью от непосредственного участия в этих процессах. Автоматизация облегчает умственный труд человека, освобождает его от сбора информации, ее обработки, исполнения принятого решения. В системах автоматики получение, передача, преобразование и использование информации осуществляются без непосредственного участия человека. Для получения информации о ходе производственного процесса применяют датчики – элементы автоматики, преобразующие самые разные физические величины (размеры, температуру, давление, расход, скорость, уровень, влажность и т.д.) в некоторый сигнал, удобный для последующей обработки в автоматическом устройстве или ЭВМ. Затем этот сигнал обрабатывается: сравнивается с другими сигналами, анализируются его изменения. В результате обработки информационных сигналов вырабатываются исполнительные сигналы, которые и воздействуют на технологический процесс. Эти сигналы в исполнительных элементахавтоматики преобразуются в механическое воздействие, перемещающее деталь или инструмент, закрывающее или открывающее кран, включающее или отключающее нагревательную установку и т.п. Так как это воздействие требует значительной энергии, то обработка информационных сигналов предусматривает, как правило, и усиление. Таким образом, системы автоматики состоят из датчиков, усилительно-преобразовательных и исполнительных элементов. В нашей стране создана Государственная система приборов и средств автоматизации (ГСП), в которую входят тысячи самых разнообразных элементов. С их помощью может быть построена практически любая система автоматики. Естественно, что элементы, входящие в ГСП, непрерывно совершенствуются, а состав системы расширяется. Первичные преобразователи
Первичные приборы, датчики или первичные преобразователи предназначены для непосредственного преобразования измеряемой ве-личины в другую величину, удобную для измерения или использования. Выходными сигналами первичных приборов, датчиков являются унифицированные стандартизованные сигналы, в противном случае используются нормирующие преобразователи (рис. 1). Различают генераторные, параметрические и механические преобразователи: 1 Генераторные осуществляют преобразование различных видов энергии в электрическую, то есть они генерируют электрическую энергию (термоэлектрические, пьезоэлектрические, электрокинетические, гальванические и др. датчики). 2 К параметрическим относятся реостатные, тензодатчики, термосопротивления и т.п. Данным приборам для работы необходим источник энергии. 3 Выходным сигналом механических первичных преобразователей (мембранных, манометров, дифманометров, ротаметров и др.) является усилие, развиваемое чувствительным элементом под действием измеряемой величины.
Рисунок 1 - Основные структурные схемы подключения первичных преобразователей Пояснения к рисунку 1. Первичный преобразователь, датчик Д может иметь выходной унифицированный сигнал см.рис. 1а и неунифицированный сигнал (см.рис. 1б). Во втором случае используют нормирующие преобразователи НП. Нормирующий преобразователь НП выполняет следующие функции: преобразует нестандартный неунифицированный сигнал (например, mV, Ом) в стандартный унифицированный выходной сигнал; осуществляет фильтрацию входного сигнала; осуществляет линеаризацию статической характеристики датчика; применительно к термопаре, осуществляет температурную компенсацию холодного спая. Нормирующий преобразователь НП применяется, также в следующих случаях: когда необходимо подать сигнал измеряемой величины на несколько измерительных или регулирующих приборов; а также когда необходимо передать сигнал на большие расстояния, например сигнал от термопары передается на малые расстояния - до 10 м, а унифицированный сигнал постоянного тока может передаваться на большие расстояния - до 100 м. В современных промышленных регуляторах нормирующий преобразователь НП как правило является обязательной составной частью входного устройства регулятора. По термодинамическим свойствам, используемым для измерения температуры, можно выделить следующие типы термометров: - термометры расширения, основанные на свойстве температурного расширения жидких и твердых тел; - термометры газовые и жидкостные манометрические; - термометры конденсационные; - электрические термометры (термопары); - термометры сопротивления; - оптические монохроматические пирометры; - оптические цветовые пирометры; - радиационные пирометры. Первичные преобразователи для измерения давления: По принципу действия: - жидкостные (основанные на уравновешивании давления столбом жидкости); - поршневые (измеряемое давление уравновешивается внешней силой, действующей на поршень); - пружинные (давление измеряется по величине деформации упругого элемента); - электрические (основанные на преобразовании давления в какую-либо электрическую величину). По роду измеряемой величины: - манометры (измерение избыточного давления); - вакуумметры (измерение давления разряжения); - мановакумометры (измерение как избыточного давления, так и давления разряжения); - напорометры (для измерения малых избыточных давлений); - тягомеры (для измерения малых давлений, разряжений, перепадов давлений); - тягонапорометры; - дифманометры (для измерения разности или перепада давлений); - барометры (для измерения барометрического давления). Первичные преобразователи для измерения расхода пара, газа и жидкости: Приборы, измеряющие расход, называются расходомерами. Эти приборы могут быть снабжены счетчиками (интеграторами), тогда они называются расходомерами-счетчиками. Такие приборы позволяют измерять расход и количество вещества. Классификация преобразователей для измерения расхода пара, газа и жидкости: - Механические: Объемные: ковшовые, барабанного типа, мерники. Скоростные: по методу переменного или постоянного перепада давления, напорные трубки, ротационные. - Электрические: электромагнитные, ультразвуковые, радиоактивные. Первичные преобразователи для измерения уровня: Под измерением уровня понимается индикация положения раздела двух сред различной плотности относительно какой-либо горизонтальной поверхности, принятой за начало отсчета. Приборы, выполняющие эту задачу, называются уровнемерами. Методы измерения уровня: поплавковый, буйковый, гидростатический, электрический и др.
Исполнительные устройства
Исполнительные устройства предназначены для преобразования управляющих (командных) сигналов в регулирующие воздействия на объект управления. Практически все виды воздействий сводятся к механическому, т.е. к изменению величины перемещения, усилия к скорости возвратно-поступательного или вращательного движения. Исполнительные устройства являются последним звеном цепи автоматического регулирования и в общем случае состоят из блоков усиления, исполнительного механизма, регулирующего и дополнительных (обратной связи, сигнализации конечных положений и т.п.) органов. В зависимости от условий применения рассматриваемые устройства могут существенно различаться между собой. К основным блокам исполнительных устройств относят исполнительные механизмы и регулирующие органы. Исполнительные механизмы классифицируют по ряду признаков: – по виду используемой энергии – электрические, пневматические, гидравлические и комбинированные; – по конструктивному исполнению – мембранные и поршневые; – по характеру обратной связи – периодического и непрерывного действия. Электрические исполнительные механизмы являются наиболее распространенными и включают в себя электродвигатели и электромагнитный привод. В общем случае эти механизмы состоят из электродвигателя, редуктора, тормоза, соединительных муфт, контрольно-пусковой аппаратуры и специальных устройств для перемещения рабочих органов. В исполнительных механизмах применяют электродвигатели переменного (в основном асинхронные с короткозамкнутым ротором) и постоянного тока. Наряду с электродвигателями массового изготовления используют и специальные конструкции позиционного и пропорционального действия, с контактным и бесконтактным управлением. По характеру изменения положения выходного органа электродвигательные исполнительные механизмы могут быть постоянной и переменной скорости, а также шаговыми. По назначению их делят на однооборотные (до 360°), многооборотные и прямоходные. Исполнительные механизмы, объединенные с усилителями, имеют различные конструктивные решения, часть из которых рассмотрим ниже. Основным в таком приводе является регулирование скорости движения штока, выполняемое с дроссельным или объемным регулированием. При управлении с дроссельным регулированием используют золотниковые распределители или «сопло-заслонку». Работа гидропривода с дроссельным регулированием позволяет изменять величину перекрытия отверстий (т. е. дросселировать), через которые жидкость попадает в рабочий цилиндр. Перемещение золотниковой пары вправо позволяет маслу из напорной линии через канал попасть в полость А рабочего цилиндра и поршень будет перемещаться вправо. При этом масло, находящееся в полости Б, будет сливаться через канал в бак. Перемещение золотника влево переместит в ту же сторону и поршень, а отработавшее масло будет сливаться из полости А в бак через канал. При расположении золотниковой пары в среднем положении оба канала, соединяющих золотниковое устройство с рабочим цилиндром, перекрыты и поршень неподвижен.
Регулятор Регулятор – это устройство, которое управляет величиной контролируемого параметра. Регуляторы используются в системах автоматического регулирования. Они следят за отклонением контролируемого параметра от заданного значения и формируют управляющие сигналы для минимизации этого отклонения. В системах автоматического регулирования наиболее распространенными являются П регулятор, ПИ регулятор, ПИД регулятор, позиционный регулятор. Часто отдельно выделяют ШИМ регуляторы, но это ПДД регулятор, выход которого преобразуется в один или два дискретных сигнала с помощью широтноимпульсной модуляции. Кроме того, сейчас появляется все больше регуляторов, реализующих законы управления на базе нечеткой логики нечеткий регулятор. Тип регулируемого параметра Существуют универсальные регуляторы - им на вход можно подать любой тип сигнала. С их помощью можно делать системы регулирования любых технологических параметров. Однако часто тип регулируемого параметра жестко ограничен: регулятор давления,регулятор температуры,регулятор уровня,регулятор расхода и т.п. Это связано с тем, что для измерения различных типов сигналов могут использоваться различные алгоритмы обработки. Так регулятор температуры предполагает при получении сигналов от термопар компенсацию температуры холодных спаев и преобразование величины контролируемой термо ЭДС в значение температуры. В регуляторе расхода часто надо уточнить величину измеренного расхода по значению давления и температуры контролируемой среды. Поэтому, чтобы упростить программу, зашитую в регулятор, и удешевить изделие производители разделяют их по назначению. Точность регулирования По этому параметру можно выделить общепромышленные и прецизионные регуляторы. В качестве примера можно привести прецизионный регулятор температуры ПРОТЕРМ. Питание регуляторов Важным параметром является необходимость использования внешнего источника питания на 24 В постоянного тока и наличие встроенного питания измерительных цепей. Программируемы логический контроллер Программи́руемый логи́ческий контро́ллер (ПЛК) (англ. Programmable Logic Controller, PLC) или программируемый контроллер — электронная составляющая промышленного контроллера, специализированного (компьютеризированного) устройства, используемого для автоматизации технологических процессов. В качестве основного режима длительной работы ПЛК, зачастую в неблагоприятных условиях окружающей среды, выступает его автономное использование, без серьёзного обслуживания и практически без вмешательства человека. Иногда на ПЛК строятся системы числового программного управления станком (ЧПУ, англ. Computer numerical control, CNC). ПЛК являются устройствами реального времени. В отличие от: - микроконтроллера (однокристального компьютера), микросхемы предназначенной для управления электронными устройствами, областью применения ПЛК обычно являются автоматизированные процессы промышленного производства, в контексте производственного предприятия; - компьютеров, ПЛК ориентированы на работу с машинами и имеют развитый машинный ввод-вывод сигналов датчиков и исполнительных механизмов в противовес возможностям компьютера, ориентированного на человека (клавиатура, мышь, монитор и т.п.); - встраиваемых систем – ПЛК изготавливается как самостоятельное изделие, отдельно от управляемого при его помощи оборудования. Первые логические контроллеры появились в виде шкафов с набором соединённых между собой реле и контактов. Эта схема задавалась жёстко на этапе проектирования и не могла быть изменена далее. Первый в мире ПЛК — MOdular DIgital CONtroller (Modicon) 084, имеющий память 4 кБ, произведен в 1968 году. В первых ПЛК, пришедших на замену обычным логическим контроллерам, логика соединений программировалась схемой соединений LD (Ladder logic Diagram). Устройство имело тот же принцип работы, но реле и контакты (кроме входных и выходных) были виртуальными, то есть существовали в виде программы, выполняемой микроконтроллером ПЛК. Современные ПЛК являются «свободно программируемыми». В системах управления технологическими объектами логические команды преобладают над числовыми операциями, что позволяет при сравнительной простоте микроконтроллера (шины шириной 8 или 16 бит), получить мощные системы действующие в режиме реального времени. В современных ПЛК числовые операции реализуются наравне с логическими. В то же время, в отличие от большинства процессоров компьютеров, в ПЛК обеспечивается доступ к отдельным битам памяти. Основные ПЛК - Siemens — SIMATIC S5 и S7; - Segnetics — Pixel 2511 и SMH 2Gi; - Omron; - Mitsubishi — серия Melsec (FX, Q); - Schneider Electric — PLC Twido и более функциональная серия Modicon: M340, TSX Premium, TSX Quantum, TSX Atrium; - Beckhoff - Allen-Bradley: ControlLogix
Интерфейсы ПЛК ПЛК в своём составе не имеют интерфейса для человека, типа клавиатуры и дисплея. Их программирование, диагностика и обслуживание производится подключаемыми для этой цели программаторами – специальным устройством или устройствами на базе более современных технологий – персонального компьютера или ноутбука, со специальными интерфейсами и со специальным программным обеспечением (например, SIMATIC STEP 7 в случае ПЛК SIMATIC S7-300 или SIMATIC S7-400). В системах управления технологическими процессами ПЛК взаимодействуют с различными компонентами систем человеко-машинного интерфейса (например операторскими панелями) или рабочими местами операторов на базе ПК, часто промышленных, обычно через промышленную сеть Датчики и исполнительные устройства подключаются к ПЛК: - централизованно: в корзину ПЛК устанавливаются модули ввода-вывода. Датчики и исполнительные устройства подключаются отдельными проводами непосредственно, либо при помощи согласовательных модулей, к входам/выходам сигнальных модулей; - или по методу распределённой периферии, когда удалённые от ПЛК датчики и исполнительные устройства связаны с ПЛК посредством каналов связи и, возможно, корзин-расширителей с использованием связей типа «ведущий-ведомый» (англ. Master-Slave) Классификация ПЛК по конструктивному исполнению: - Модульные; - Моноблочные; - РС-base совместимые.
Таблица 1 - Основные технические характеристики
Преобразователи с верхними пределами измерений, отмеченные знаком "х", рекомендуется применять только при необходимости их перенастройки в период эксплуатации на другие пределы измерений, предусмотренные для данной модели. Таблица 2 пределы измерений, предусмотренные для Сапфир-22ДД
Таблица 3 Обозначение исполнения датчиков по материалам, контактирующим с измеряемой средой
Таблица 4 Варианты монтажных частей
Взрывозащита - искробезопасная цепь, маркировка "0ExiaIICT6" - для исполнения "Сапфир-22ДД-Ех". Обычное (невзрывозащищённое) исполнение "Сапфир-22ДД" по ТУ 25-02.720136-83. Контролируемая среда агрессивная или нейтральная - жидкость, газ, пар. Заключение
Высокая надежность управления, надежность обработки и передачи данных – вот задачи автоматизации. Комплексная программа автоматизации различных производств за счет оперативного централизованного контроля и оптимизации режимов В качестве одного из вариантов решения проблемы сокращения численности производственных работников предлагается разработка автоматизированной системы поддержки принятия решений в задачах контроля и диагностики технологических процессов производства, внедрение Датчик разрежения Сапфир-22-ДВ и ультразвуковой уровнемер VEGASON 61 обладают широкими функциональными возможностями, обеспечивает интегрирование всех функций автоматизации. Отмечается высокая производительность данных аппаратов и привлекает низкая их стоимость.
Филиал ФГБОУ ВПО «МГУТУ им. К.Г. Разумовского» в г. Мелеузе
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Последнее изменение этой страницы: 2017-02-10; просмотров: 245; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.220 (0.013 с.) |