Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Мемристорные свойства нанотрубокСодержание книги
Поиск на нашем сайте
В 2009 г., Yao, Zhang и др.[21] продемонстрировали мемристор на основе однослойных горизонтально ориентированных углеродных нанотрубоках расположенных на диэлектрической подложке. Проявление мемристорного эффекта в представленной структуре было обусловлено взаимодействием УНТ с диэлектрической подложкой и захватом носителей заряда на границе раздела УНТ/SiO2. В 2011 г., Vasu, Sampath и др.[22] обнаружили мемристорный эффект на массиве разориентированных многослойных углеродных нанотрубок. Было установлено, что резистивное переключение в массиве обусловлено формированием проводящих каналов из УНТ ориентированных электрическим полем. В 2013 г., Ageev, Blinov и др.[23] сообщили об обнаружении мемристорного эффекта на пучках вертикально ориентированных углеродных нанотрубок при исследовании методом сканирующей туннельной микроскопии. После, в 2015 г. эта же группа ученых показала[24] возможность резистивного переключения в индивидуальных вертикально ориентированных УНТ. Обнаруженный мемристорный эффект был основан на возникновении внутреннего электрического поля в УНТ при ее деформации.
Графе́н (англ. graphene) — двумерная аллотропная модификация углерода, образованная слоем атомов углерода толщиной в один атом, находящихся в sp²-гибридизации и соединённых посредством σ- и π-связей в гексагональную двумерную кристаллическую решётку. Его можно представить как одну плоскость графита, отделённую от объёмного кристалла. По оценкам, графен обладает большой механическойжёсткостью и рекордно большой теплопроводностью (~1 ТПа[4] и ~5·103 Вт·м−1·К−1[5] соответственно). Высокая подвижность носителей заряда (максимальная подвижность электронов среди всех известных материалов) делает его перспективным материалом для использования в самых различных приложениях, в частности, как будущую основу наноэлектроники[6] и возможную замену кремния в интегральных микросхемах. Один из существующих в настоящее время способов получения графена в условиях научных лабораторий[7][8] основан на механическом отщеплении или отшелушивании слоёв графита от высокоориентированного пиролитического графита. Он позволяет получать наиболее качественные образцы с высокой подвижностью носителей. Кусочки графена получают при механическом воздействии на высокоориентированный пиролитический графит или киш-графит[38]. Сначала плоские куски графита помещают между липкими лентами (скотч) и расщепляют раз за разом, создавая достаточно тонкие слои (среди множества полученных плёнок могут попадаться одно- и двуслойные, которые и представляют интерес). После отшелушивания скотч с тонкими плёнками графита прижимают к подложке окислённого кремния. При этом трудно получить плёнку определённого размера и формы в фиксированных частях подложки (горизонтальные размеры плёнок составляют обычно около 10 мкм)[8]. Найденные с помощью оптического микроскопа слабо различимые (при толщине диэлектрика 300 нм) плёнки подготавливают для измерений. Толщину можно определить с помощью атомно-силового микроскопа (она может варьироваться в пределах 1 нм для графена) или используя комбинационное рассеяние. Используя стандартную электронную литографию и реактивное плазменное травление, задают форму плёнки для электрофизических измерений. Кусочки графена также можно приготовить из графита, используя химические методы[39]. Сначала микрокристаллы графита подвергаются действию смеси серной и азотной кислот. Графит окисляется, и на краях образца появляются карбоксильные группы графена. Их превращают в хлориды при помощи тионилхлорида. Затем под действием октадециламина в растворах тетрагидрофурана, тетрахлорметана и дихлорэтана они переходят в графеновые слои толщиной 0,54 нм. Этот химический метод не единственный, и, меняя органические растворители и химикаты, можно получить нанометровые слои графита[40]. Один из химических методов получения графена основан на восстановлении оксида графита. Первое упоминание о получении хлопьев восстановленного монослойного оксида графита (оксида графена) было уже в 1962 году[41]. Графан — двумерный материал, в котором один атом углерода связан с одним атомом водорода и тремя атомами углерода. Химическая формула (≡CH)n. Является гидрогенизированнымграфеном. Теоретическое существование графана было предсказано в 2003 г[1].
Композитный материа́л (КМ), компози́т — искусственно созданный неоднородный сплошной материал, состоящий из двух или более компонентов с чёткой границей раздела между ними. В большинстве композитов (за исключением слоистых) компоненты можно разделить на матрицу (или связующее) и включённые в неё армирующие элементы (или наполнители). В композитах конструкционного назначения армирующие элементы обычно обеспечивают необходимые механические характеристики материала (прочность, жёсткость и т. д.), а матрица обеспечивает совместную работу армирующих элементов и защиту их от механических повреждений и агрессивной химической среды. Композитные материалы, представляющие собой гетерофазные системы, полученные из двух или более компонентов с сохранением индивидуальности каждого отдельного компонента. КМ является однородным в макромасштабе и неоднородным в микромасштабе. Механическое поведение композиции определяется соотношением свойств армирующих элементов и матрицы, а также прочностью связей между ними. Характеристики и свойства создаваемого изделия зависят от выбора исходных компонентов и технологии их совмещения. При совмещении армирующих элементов и матрицы образуется композиция, обладающая набором свойств, отражающими не только исходные характеристики его компонентов, но и новые свойства, которыми отдельные компоненты не обладают. Например, наличие границ раздела между армирующими элементами и матрицей существенно повышает трещиностойкость материала, и в композициях, в отличие от однородных металлов, повышение статической прочности приводит не к снижению, а, как правило, к повышению характеристик вязкости разрушения. Матрица является важнейшим компонентом композита. Матрица обеспечивает монолитность композита, фиксирует форму изделия и взаимное расположение армирующих нитей, распределяет действующие напряжения по объему материала, обеспечивая равномерную нагрузку на волокна и ее перераспределение при разрушении части волокна. Требования, предъявляемые к матрице, можно разделить на эксплуатационные и технологические. К эксплуатационным относятся: физико-механические и физико химические свойства, температура эксплуатации, стойкость к окружающей среде или среде эксплуатации. Прочностные характеристики материала матрицы являются определяющими при сдвиговых нагрузках, нагружении композита в направлениях, отличных от ориентации волокон, и циклических нагружениях. Технологические требования определяют метод изготовления изделий из композитов, возможность выполнения конструкций заданных габаритов и формы, параметры технологических процессов, способы входного и технологического контроля, получение предматериала (пре-преги, премиксы, пресс-материалы, слопреги) и сроки сохранения их технологичности; конструкционные элементы (профили, трубы, листы, объемные заготовки) и способы их переработки в изделия (склеиванием, сплавлением, спеканием, сваркой, механической обработкой и т.д.). В качестве матричного материала используется широкий спектр различных веществ, часто материал матрицы имеет ту же природу, что и армирующий материал, например, углеродная, керамическая, металлическая матрицы. Это позволяет создавать материалы с использованием предельно допустимых возможностей, присущих армирующему наполнителю, в первую очередь это касается термостойкости, сочетать конструкционные достоинства материалов с общими достоинствами композитов. В то же время на сегодняшний день главенствующая роль среди матричного материала принадлежит полимерам. Объем выпуска полимерных композитов намного превосходит выпуск материалов с другими матрицами.
|
||||
Последнее изменение этой страницы: 2017-02-09; просмотров: 254; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.1.63 (0.011 с.) |