Численное решение систем нелинейных уравнений 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Численное решение систем нелинейных уравнений



Постановка задачи.

Требуется решить систему нелинейных уравнений (1). В координатном виде эту задачу можно записать так: , где 1 ≤ kn.

Убедиться в существовании решения и количестве корней, а также выбрать нулевое приближение в случае системы двух уравнений с двумя неизвестными можно, построив графики функций в удобных координатах. В случае сложных функций можно посмотреть поведение аппроксимирующих их полиномов. Для трех и более неизвестных, а также для комплексных корней, удовлетворительных способов подбора начального приближения нет.

Метод Ньютона.

Обозначим некоторое приближение к корню системы уравнений . Пусть малое . Вблизи каждое уравнение системы можно линеаризовать следующим образом:

, 1 ≤ kn. (2)

Это можно интерпретировать как первые два члена разложения функции в ряд Тейлора вблизи . В соответствии с (1), приравнивая (2) к нулю, получим:

, 1 ≤ kn. (3)

Мы получили систему линейных уравнений, неизвестными в которой выступают величины . Решив ее, например, методом Гаусса, мы получим некое новое приближение к , т.е. . Выражение (3) можно представить как обобщение на систему уравнений итерационного метода Ньютона, рассмотренного в предыдущей главе:

, (4)

где в данном случае

– матрица Якоби, которая считается для каждого (s) приближения.

 

Критерием окончания итерационного процесса является условие (Можем принять под как норму , так и ). Достоинством метода является высокая скорость сходимости. Сходимость метода зависит от выбора начального приближения: если , то итерации сходятся к корню. Недостатком метода является вычислительная сложность: на каждой итерации требуется находить матрицу частных производных и решать систему линейных уравнений. Кроме того, если аналитический вид частных производных неизвестен, их надо считать численными методами.


Блок-схема метода Ньютона для решения систем нелинейных уравнений.

Так как метод Ньютона отличается высокой скоростью сходимости при выполнении условий сходимости, на практике критерием работоспособности метода является число итераций: если оно оказывается большим (для большинства задач >100), то начальное приближение выбрано плохо.

 

Частным случаем решения (4) методом Ньютона системы из двух нелинейных уравнений

являются следующие легко программируемые формулы итерационного процесса:

, где ,

,

 

Метод простых итераций.

Метод простых итераций для решения (1) аналогичен методу, рассмотренному при решении нелинейных уравнений с одним неизвестным. Прежде всего, выбирается начальное приближение , а исходная система уравнений преобразуется к эквивалентной системе вида

, (5)

и по ней осуществляется итерационный цикл. Если итерации сходятся, то они сходятся к решению уравнения (1). Обозначим . Достаточным условием сходимости является . Скорость сходимости метода сильно зависит от вида конкретно подбираемых функций , которые должны одновременно удовлетворять условиям эквивалентности (5) и (1), и обеспечивать сходимость итерационного процесса.

Например, для исходной системы уравнений эквивалентная итерационная система (5) может быть представлена в следующем виде:

,

где множители = –0.15и = –0.1 подбираются из анализа условий сходимости.

 

Метод спуска.

Рассмотрим функцию . Она неотрицательна и обращается в нуль в том и только в том случае, если . То есть, если мы найдем глобальный минимум , то полученные значения как раз и будут решениями уравнения (1). Подробнее о решении таких задач см. следующую главу.


Поиск минимума функций.

Задачи поиска максимума эквивалентны задачам поиска минимума, так как требуется лишь поменять знак перед функцией. Для поиска минимума необходимо определить интервал, на котором функция могла бы иметь минимум. Для этого можно использовать (1) графическое представление функции, (2) аналитический анализ аппроксимирующей функции и (3) сведения о математической модели исследуемого процесса (т.е. законы поведения данной функции).

 



Поделиться:


Последнее изменение этой страницы: 2017-02-08; просмотров: 219; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.59.187 (0.008 с.)