Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Программные алгоритмы организации взаимодействия процессовСодержание книги
Поиск на нашем сайте
Требования, предъявляемые к алгоритмам Организация взаимоисключения для критических участков, конечно, позволит избежать возникновения race condition, но не является достаточной для правильной и эффективной параллельной работы кооперативных процессов. Сформулируем пять условий, которые должны выполняться для хорошего программного алгоритма организации взаимодействия процессов, имеющих критические участки, если они могут проходить их в произвольном порядке.
Надо заметить, что описание соответствующего алгоритма в нашем случае означает описание способа организации пролога и эпилога для критической секции. Запрет прерываний Наиболее простым решением поставленной задачи является следующая организация пролога и эпилога: while (some condition) { запретить все прерывания critical section разрешить все прерывания remainder section } Поскольку выход процесса из состояния исполнение без его завершения осуществляется по прерыванию, внутри критической секции никто не может вмешаться в его работу. Однако такое решение может иметь далеко идущие последствия, поскольку позволяет процессу пользователя разрешать и запрещать прерывания во всей вычислительной системе. Допустим, что пользователь случайно или по злому умыслу запретил прерывания в системе и зациклил или завершил свой процесс. Без перезагрузки системы в такой ситуации не обойтись. Тем не менее запрет и разрешение прерываний часто применяются как пролог и эпилог к критическим секциям внутри самой операционной системы, например при обновлении содержимого PCB. Переменная-замок В качестве следующей попытки решения задачи для пользовательских процессов рассмотрим другое предложение. Возьмем некоторую переменную, доступную всем процессам, с начальным значением равным 0. Процесс может войти в критическую секцию только тогда, когда значение этой переменной-замка равно 0, одновременно изменяя ее значение на 1 – закрывая замок. При выходе из критической секции процесс сбрасывает ее значение в 0 – замок открывается (как в случае с покупкой хлеба студентами в разделе "Критическая секция"). shared int lock = 0; /* shared означает, что */ /* переменная является разделяемой */
while (some condition) { while(lock); lock = 1; critical section lock = 0; remainder section } К сожалению, при внимательном рассмотрении мы видим, что такое решение не удовлетворяет условию взаимоисключения, так как действие while(lock); lock = 1; не является атомарным. Допустим, процесс P0 протестировал значение переменной lock и принял решение двигаться дальше. В этот момент, еще до присвоения переменной lock значения 1, планировщик передал управление процессу P1. Он тоже изучает содержимое переменной lock и тоже принимает решение войти в критический участок. Мы получаем два процесса, одновременно выполняющих свои критические секции. Строгое чередование Попробуем решить задачу сначала для двух процессов. Очередной подход будет также использовать общую для них обоих переменную с начальным значением 0. Только теперь она будет играть не роль замка для критического участка, а явно указывать, кто может следующим войти в него. Для i-го процесса это выглядит так: shared int turn = 0;
while (some condition) { while(turn!= i); critical section turn = 1-i; remainder section } Очевидно, что взаимоисключение гарантируется, процессы входят в критическую секцию строго по очереди: P0, P1, P0, P1, P0,... Но наш алгоритм не удовлетворяет условию прогресса. Например, если значение turn равно 1, и процесс P0 готов войти в критический участок, он не может сделать этого, даже если процесс P1 находится в remainder section. Флаги готовности Недостаток предыдущего алгоритма заключается в том, что процессы ничего не знают о состоянии друг друга в текущий момент времени. Давайте попробуем исправить эту ситуацию. Пусть два наших процесса имеют разделяемый массив флагов готовности входа процессов в критический участок shared int ready[2] = {0, 0}; Когда i-й процесс готов войти в критическую секцию, он присваивает элементу массива ready[i] значение равное 1. После выхода из критической секции он, естественно, сбрасывает это значение в 0. Процесс не входит в критическую секцию, если другой процесс уже готов к входу в критическую секцию или находится в ней. while (some condition) { ready[i] = 1; while(ready[1-i]); critical section ready[i] = 0; remainder section } Полученный алгоритм обеспечивает взаимоисключение, позволяет процессу, готовому к входу в критический участок, войти в него сразу после завершения эпилога в другом процессе, но все равно нарушает условие прогресса. Пусть процессы практически одновременно подошли к выполнению пролога. После выполнения присваивания ready[0]=1 планировщик передал процессор от процесса 0 процессу 1, который также выполнил присваивание ready[1]=1. После этого оба процесса бесконечно долго ждут друг друга на входе в критическую секцию. Возникает ситуация, которую принято называть тупиковой (deadlock). (Подробнее о тупиковых ситуациях рассказывается в лекции 7.) Алгоритм Петерсона Первое решение проблемы, удовлетворяющее всем требованиям и использующее идеи ранее рассмотренных алгоритмов, было предложено датским математиком Деккером (Dekker). В 1981 году Петерсон (Peterson) предложил более изящное решение. Пусть оба процесса имеют доступ к массиву флагов готовности и к переменной очередности. shared int ready[2] = {0, 0}; shared int turn; while (some condition) { ready[i] = 1; turn =1-i; while(ready[1-i] && turn == 1-i); critical section ready[i] = 0; remainder section } При исполнении пролога критической секции процесс Pi заявляет о своей готовности выполнить критический участок и одновременно предлагает другому процессу приступить к его выполнению. Если оба процесса подошли к прологу практически одновременно, то они оба объявят о своей готовности и предложат выполняться друг другу. При этом одно из предложений всегда следует после другого. Тем самым работу в критическом участке продолжит процесс, которому было сделано последнее предложение. Давайте докажем, что все пять наших требований к алгоритму действительно удовлетворяются. Удовлетворение требований 1 и 2 очевидно. Докажем выполнение условия взаимоисключения методом от противного. Пусть оба процесса одновременно оказались внутри своих критических секций. Заметим, что процесс Pi может войти в критическую секцию, только если ready[1-i] == 0 или turn == i. Заметим также, что если оба процесса выполняют свои критические секции одновременно, то значения флагов готовности для обоих процессов совпадают и равны 1. Могли ли оба процесса войти в критические секции из состояния, когда они оба одновременно находились в процессе выполнения цикла while? Нет, так как в этом случае переменная turn должна была бы одновременно иметь значения 0 и 1 (когда оба процесса выполняют цикл, значения переменных измениться не могут). Пусть процесс P0 первым вошел в критический участок, тогда процесс P1 должен был выполнить перед вхождением в цикл while по крайней мере один предваряющий оператор (turn = 0;). Однако после этого он не может выйти из цикла до окончания критического участка процесса P0, так как при входе в цикл ready[0] == 1 и turn == 0, и эти значения не могут измениться до тех пор, пока процесс P0 не покинет свой критический участок. Мы пришли к противоречию. Следовательно, имеет место взаимоисключение. Докажем выполнение условия прогресса. Возьмем, без ограничения общности, процесс P0. Заметим, что он не может войти в свою критическую секцию только при совместном выполнении условий ready[1] == 1 и turn == 1. Если процесс P1 не готов к выполнению критического участка, то ready[1] == 0, и процесс P0 может осуществить вход. Если процесс P1 готов к выполнению критического участка, то ready[1] == 1 и переменная turn имеет значение 0 либо 1, позволяя процессу P0 либо процессу P1 начать выполнение критической секции. Если процесс P1 завершил выполнение критического участка, то он сбросит свой флаг готовности ready[1] == 0, разрешая процессу P0 приступить к выполнению критической работы. Таким образом, условие прогресса выполняется. Отсюда же вытекает выполнение условия ограниченного ожидания. Так как в процессе ожидания разрешения на вход процесс P0 не изменяет значения переменных, он сможет начать исполнение своего критического участка после не более чем одного прохода по критической секции процесса P1.
|
||||
Последнее изменение этой страницы: 2017-02-07; просмотров: 360; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.254.25 (0.011 с.) |