Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Имени профессора Н.Е. Жуковского↑ Стр 1 из 5Следующая ⇒ Содержание книги Поиск на нашем сайте
Имени профессора Н.Е. Жуковского
Кафедра АВИАЦИОННЫХ ДВИГАТЕЛЕЙ (№ 34) (полное наименование кафедры)
УТВЕРЖДАЮ Начальник кафедры № 17 полковник М. Немичев «» 2010 г.
дисциплина: ТЕОРИЯ АВИАЦИОННЫХ ДВИГАТЕЛЕЙ (полное наименование дисциплины)
СПЕЦИАЛЬНОСТЬ Эксплуатация самолетов, вертолетов и авиационных двигателей.
КАФЕДРАЛЬНЫЙ ТЕКСТ ЛЕКЦИИ
РАЗДЕЛ 1. Параметры и характеристики элементов авиационных силовых установок Тема № 1. Основные уравнения движения газа в двигателях и их элементах
Лекция № 1. Введение. Основные уравнения движения газа в двигателях и их элементах.
Обсуждено на заседании ПМК «____»_______________2010г. протокол № ___
г. Москва УЧЕБНЫЕ И ВОСПИТАТЕЛЬНЫЕ ЦЕЛИ: 1. Ознакомиться с основными этапами становления теории авиационных газотурбинных двигателей как науки, и об ученых, внесших в ее развитие наибольший вклад; 2. Изучить основные уравнения движения газа в двигателях и их элементах
Время: 2 часа ПЛАН ЛЕКЦИИ:
УЧЕБНО-МАТЕРИАЛЬНОЕ ОБЕСПЕЧЕНИЕ:
1.Наглядные пособия: Презентация на ПЭВТ по истории развития ВРД 2. Технические средства обучения: ПЭВМ, проектор. ЛИТЕРАТУРА: 1. Теория авиационных двигателей. Часть 1. Под ред. Ю.Н. Нечаева. М.: ВВИА им. Н.Е. Жуковского, 2006., стр. 6-30.
Введение Дисциплина “Теория авиационных двигателей ” является базовой для изучения ряда специальных дисциплин: "Конструкция и прочность авиадвигателей", "Системы управления авиационных силовых установок", "Техническая эксплуатация летательных аппаратов и авиационных двигателей", "Динамика полета", "Безопасность полетов". Мы будем изучать теорию авиационных двигателей два семестра. У нас будут лекции, лабораторные и практические занятия, семинары по характеристикам конкретных авиационных двигателей и их элементов, зачеты, экзамены. Кроме того, в следующем семестре Вы будете выполнять курсовую работу по расчету эксплуатационных характеристик двигателя на ПЭВМ. Вначале мы будем изучать теорию элементов двигателя: компрессора, турбины, камеры сгорания, форсажной камеры, воздухозаборника и сопла (или другого выходного устройства). Затем исследуем рабочий процесс авиационных ГТД и влияние основных параметров этого процесса на данные двигателя. Далее рассмотрим особенности совместной работы основных элементов двигателя при его работе в полёте на установившихся режимах и эксплуатационные характеристики двигателей различных типов. А затем – неустановившиеся режимы работы ГТД (запуск, приемистость и сброс оборотов) и влияние различных условий эксплуатации на работу авиационных двигателей. 1. Рекомендуемая литература 1. Теория авиационных двигателей. Часть 1. Под ред. Ю.Н. Нечаева. М.: ВВИА им. Н.Е. Жуковского, 2006. 2. Теория авиационных двигателей. Часть 2. Под ред. Ю.Н. Нечаева. М.: ВВИА им. Н.Е. Жуковского, 2007. Дополнительная: 3. Теория авиационных двигателей. Задачник. Под ред. Р.М. Федорова. М.: ВВИА им. Н.Е. Жуковского, 2006. 4. Теория авиационных двигателей. Учебно-методическое пособие. Под ред. Р.М. Федоров. М.: ВВИА им. Н.Е. Жуковского, 2007. 5. Федоров Р.М., Полев А.С., Дрыгин А.С. Расчет параметров и характеристик ТРДД и ТРДДФ. Учебное пособие. М.: ВВИА им. Н.Е. Жуковского, 2002. 6. Методические материалы к практическим занятиям по дисциплине «Теория авиационных двигателей» М.: ВВИА им. Н.Е. Жуковского, 2007. 7. Федоров Р.М., Мелик-Пашаев Н.И. Таблицы и диаграммы теплофизических величин и газоди намических функций. М.: Воениздат, 1980.
Двухконтурные турбореактивные двигатели (ТРДД)
Это основной тип двигателей, применяемых в настоящее время на военных самолетах. Первое авторское свидетельство на ТРДД было получено будущим академиком Архипом Михайловичем Люлька еще в 30-х годах ушедшего недавно ХХ века. Поступающий в компрессор воздух разделяется далее на 2 части. Одна часть поступает за компрессором, как и в ТРД, в камеру сгорания, в турбину и сопло. Это – так называемый внутренний контур. Вторая же часть, пройдя несколько первых ступеней компрессора, поступает далее в наружный контур, канал которого заканчивается вторым соплом (кольцевым). При том же расходе топлива, как в ТРД, тяга двигателя получается большей за счет увеличения отбрасываемой соплами массы воздуха и газа. Это делает такой двигатель значительно более экономичным, чем ТРД (на дозвуковых скоростях полёта) По такой схеме выполнены, например, двигатели Д-18Т, установленные на самолете Ан-124 «Руслан».. Поэтому такие двигатели получили весьма широкое распространение на самолетах ГА и ВТА. По ряду соображений ТРДД обычно делают двухвальными или даже трехвальными, располагая на отдельном валу те ступени компрессора, которые подают воздух, как в первый, так и во второй контур. Эту группу ступеней принято называть вентилятором ТРДД.
Прямоточные воздушно-реактивные двигатели (ПВРД) К числу ВРД относятся и прямоточные ВРД (ПВРД). Принцип его работы основан на том, что при больших скоростях полета происходит большое повышение давления воздуха при его торможении перед двигателем. Например, при скорости полета V = 3000 км/ч давление повышается примерно в 30 раз, а при V = 4000 км/ч – в 100 раз. Поэтому компрессор и турбина не нужны, а основными элементами такого бескомпрессорного («прямоточного») ВРД являются воздухозаборник, камера сгорания и сопло.
Воздухозаборник, служащий для торможения потока воздуха от скорости, равной скорости полета (~ 400... 500 м/с и более) то ~ 100 м/с с минимальными потерями давления; Камера сгорания; выполняющая те же функции, что и в ТРД или ТРДД; Р еактивное сопло. На больших сверхзвуковых скоростях полета (~ 1200 м/с и более) с целью уменьшения потерь при торможении потока в воздухозаборнике скорость в нём может уменьшаться не до дозвуковой, а до малой сверхзвуковой. И тогда процесс горения в камере сгорания организуется при сверхзвуковой скорости потока в ней. Такие двигатели получили название гиперзвуковых прямоточных ВРД (ГПВРД). ПВРД и ГПВРД имеют перспнктиву применения на гиперзвуковых (с числом Маха полета 4 – 6) и воздушно-космических ЛА, Двигатели непрямой реакции На летательных аппаратах применяются также двигатели, создающие тягу не непосредственно за счет реакции струи газов, а за счет привода во вращение различных воздушных винтов (тянущих или несущих). Их называют двигателями непрямой реакции. На легких самолетах и вертолетах (вспомогательного, штабного и т.д. назначения) часто устанавливаются поршневые двигатели (ПД), аналогичные бензиновым двигателям автомобилей и тяжелых мотоциклов. Но на летательных аппаратах, используемых в боевых операциях, в настоящее время устанавливаются только газотурбинные двигатели (турбовальные, турбовинтовые, турбовинтовентиляторные). Турбовальные двигатели (ТВаД)
Так называются двигатели, устанавливаемые на вертолетах. В его турбине газы расширяются до атмосферного давления. В результате мощность турбины оказывается значительно больше, чем необходимо для вращения компрессора. Избыток мощности передается через выводной вал двигателя и редуктор на несущий винт вертолета. Обычно ТВаД выполняют по схеме со свободной турбиной. Одна часть ступеней турбины используются для вращения компрессора (состоящего из одной или двух групп ступеней). А последняя ступень (или группа ступеней) устанавливается на выводном валу и связывается непосредственно с несущим винтов. Эта ступень (или группа ступеней) называется свободной турбиной. Турбовинтовые двигатели (ТВД)
ТВД отличается от ТВаД главным образом тем, что в полете со скоростью 600-900 км/ч целесообразно иметь за турбиной давление несколько выше атмосферного с тем, чтобы в сопле, установленном за турбиной, газы приобретали скорость, несколько большую скорости полета, и за счет этого создавалась (в дополнение к тяге винта) небольшая реактивная тяга (как у ТРД), т.е. на ТВД устанавливается сопло. А избыточная мощность турбины передается через вал на воздушный винт, расположенный обычно впереди двигателя. Так как частота вращения турбины имеет порядок ~ 10 об/мин, а тянущего воздушного винта ~10 об/мин, то в передней части ТВД устанавливается зубчатая передача (редуктор).
Раздел1. Параметры и характеристики элементов Основные допущения Движение воздуха или газа в элементах двигателя представляет собой сложное течение вязкого сжимаемого газа. Кроме того, оно является нестационарным (взаимное перемещение лопаток). Детальный учет особенностей такого течения весьма сложен. Поэтому в инженерной практике для анализа и расчета процессов, протекающих в силовых установках, широко используются одномерные уравнения движения газа. — движение газа является стационарным (установившимся), т.е. параметры потока (скорость, давление, температура, плотность) в любой точке рассматриваемого объема неизменны во времени; — течение газа является одномерным, т.е. параметры потока во всех точках каждого поперечного сечения потока одинаковы, а вектор скорости газа нормален к этому сечению; их изменение происходит лишь в направлении движения. Уравнение неразрывности Расход газа через любое поперечное сечение какого либо канала, т.е. количество газа, проходящее через это сечение в единицу времени, равен где скорость потока, его плотность и площадь данного сечения. На установившемся режиме расход газа через все сечения данного канала одинаков (если между ними нет подвода газа со стороны или его отвода). Следовательно для двух произвольных сечений 1-1 и 2-2 или . Для многих практических расчетов оказывается удобным использовать выражение расхода газа через параметры заторможенного потока и газодинамическую функцию : , где размерный коэффициент зависит от природы газа, а его значение можно взять в [7]. имени профессора Н.Е. Жуковского
|
|||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2017-02-07; просмотров: 201; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.17.76.163 (0.01 с.) |