Химический состав воды и его влияние на здоровье населения. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Химический состав воды и его влияние на здоровье населения.



В природе вода никогда не встречается в виде химически чистого соединения. Обладая свойствами универсального растворителя, она посто­янно имеет большое количество различных элементов и соединений, состав и соотношение которых определяется условиями формирования воды, соста­вом водоносных пород. Большое влияние на состав природных вод, как по­верхностных, так и подземных, оказывает техногенное их загрязнение.

Когда мы говорим о воде как причине заболеваний неинфекционной природы, мы имеем в виду влияние на здоровье человека химических при­месей, наличие и количество которых обусловлено природными особеннос­тями формирования источника водоснабжения либо техногенными и антропо­генными факторами.

Издавна с химическим (минеральным) составом воды связывалась воз­можность развития среди населения массовых заболеваний. Влияние общей минерализации воды, или суммарного солевого состава, на организм чело­века - наиболее изученный вопрос, связанный с проблемой водоснабжения. Предел минерализации питьевой воды (сухого остатка) 1000 мг/г был в свое время установлен по органолептическому признаку. Основную часть

сухого остатка пресных вод составляют хлориды и сульфаты. Эти соли об­ладают выраженным солевым или горьким вкусом, что является основанием для ограничения их содержания в воде на уровне порога ощущения:

350 мг/л для хлоридов и 500 мг/л для сульфатов.

Установлено, что нижним пределом минерализации, при котором гоме­остаз организма поддерживается адаптивными реакциями, является сухой остаток в 100 мг/л, оптимальный уровень минерализации питьевой воды находится в диапазоне 200- 400 мг/л. При этом минимальное содержание кальция должно быть не менее 25 мг/л, магния 10 мг/л.

Жесткость воды, обусловленная суммарным содержанием кальция и магния, обычно рассматривалась в хозяйственно-бытовом аспекте (образо­вание накипи, повышенный расход моющих средств, плохое разваривание мяса и овощей и т.д.). ВЫ тоже время имеется прямая высокая корреляция жесткости воды с содержанием в ней, кроме кальция и магния, еще 12 элементов и ряда анионов. Однако уже давно существовали предположения об этиологической роли солей, обусловливающих жесткость воды, в разви­тии мочекаменной болезни. Урологами выделяются даже так называемые ка­менные зоны - территории, на которых уролитиаз может считаться эндеми­ческим заболеванием. Источники питьевой воды в этих зонах характеризу­ются высокой жесткостью.

В последние годы высказано предположение, что вода с низким со­держанием солей жесткости способствует развитию сердечно-сосудистых заболеваний.

Наличие, концентрация и соотношение нитратов и нитритов в воде источников хозяйственно-питьевого водоснабжения до недавнего времени расценивались лишь как показатели санитарного состояния водоема, сви­детельствующие о степени и давности его загрязнения органическими ве­ществами. В 1945 г. были описаны 2 случая развития цианоза у детей раннего возраста, закончившиеся смертельно. Цианоз сопровождался нали­чием в крови повышенных количеств метгемоглобина, что связывалось с высоким содержанием в колодезной воде, использовавшейся для разведения детских питательных смесей, нитратов. В дальнейшем это заболевание по­лучило название водно-нитратной метгемоглобинемии. Легкие формы токси­ческой метгемоглобинемии проявляются такими симптомами как слабость, бледность, повышенная утомляемость, и при недостаточной осведомленнос­ти могут быть отнесены за счет других причин. Нитраты, как известно, не способствуют образованию метгемоглобина. Их вредное действие прояв­ляется тогда, когда в результате диспепсии, дисбактериоза в кишечнике они восстанавливаются в нитриты. Всасывание нитритов приводит к повы­шению содержания метгемоглобина в крови.

В воде обнаружено до 65 микроэлементов, содержащихся в тканях жи­вотных и растений в концентрациях, соответствующих тысячным долям про­цента и менее. Гигиеническое значение микроэлементов, определяется би­ологической ролью многих из них, поскольку они не только участвуют в минеральном обмене, но и существенно влияют на общий обмен в качестве катализаторов биохимических процессов. В настоящее время доказано био­логическое значение для животных и растений около 20 микроэлементов.

Необходимо учитывать, что ряд микроэлементов в концентрациях, встречающихся в природной воде, могут оказывать неблагоприятное влия­ние на здоровье или изменять органолептические свойства воды. Поэтому они подлежат нормированию.

Нередки случаи, когда те или иные примеси к питьевой воде, не яв­лялись непосредственной причиной болезни, оказывают косвенное небла­гоприятное влияние, ухудшая органолептические свойства воды. Наличие мути, необычный цвет, запах и привкус воды с глубокой древности служи­ли признаком ее недоброкачественности. В процессе эволюции человека выработалась защитная реакция - чувство отвращения и представление об опасности для здоровья воды с неблагоприятными органолептическими свойствами.

Установлено, что незначительные изменения органолептических свойств воды снижают секрецию желудочного сока. Вместе с тем приятные вкусовые ощущения повышают остроту зрения и частоту сокращений сердца, а неприятные понижают.

Нельзя не учитывать и эстетическое воздействие неблагоприятных органолептических свойств воды. В этой связи уместно вспомнить слова

Ф.Ф. Эрисмана: "Было бы непростительной ошибкой считать удовлетворение этого эстетического требования роскошью, т.к. здесь эстетика и гигиена сливаются настолько, что разделить их положительно не представляется возможным".

Таким образом природная вода с крайне выраженной степенью колеба­ния ее состава и свойств далеко не всегда может удовлетворить физиоло­гические и гигиенические потребности человека. В ряде случаев ее пот­ребление может вызвать неблагоприятные изменения в организме: от раз­личных случаев нарушения метаболизма до развития выраженных нозологи­ческих форм, а микробная флора природной воды способна вызвать эпиде­мические вспышки кишечных инфекционных заболеваний. Отсюда вытекает необходимость гигиенического нормирования или стандартизации состава и свойств питьевой воды, а также обработки источников водоснабжения.

 

ГИГИЕНИЧЕСКИЕ ТРЕБОВАНИЯ К КАЧЕСТВУ ПИТЬЕВОЙ ВОДЫ.

Стандартизация качества воды имеет большую историю. Критерии бе­зопасности воды для здоровья менялись с расширением медицинских и био­логических знаний. Соответственно менялись и гигиенические требования к воде. В истории гигиенического нормирования качества питьевой воды можно выделить четыре этапа.

Первый этап нормирования качества воды относится к глубокой древ­ности. По свидетельству Гиппократа (трактат "О воздухе, водах и мест­ностях") для отличия чистой, т.е. "здоровой", воды от непригодной, "нездоровой", пользовались внешними признаками ее качества (мутность, цветность, запах, привкус), которые легко определять органами чувств. Органолептический способ оценки воды как единственно доступный в то время безраздельно господствовал в течение многих веков. Однако общее, только качественное, определение органолептических свойств воды не придавало ее оценке необходимую степень объективности и не могло оха­рактеризовать многих весьма важных признаков.

Становление второго этапа связано с открытиями М. Ломоносова и Лавуазье в области химии, а именно с развитием количественного и ка­чественного анализа. Результаты химических анализов, выраженные мерой и массой, привлекали своей конкретностью, т.к. могли быть использованы в качестве масштаба для сравнения воды разных источников. Большое вни­мание уделялось определению общей минерализации воды по плотному ос­татку, содержанию хлоридов и сульфатов, жесткости воды. Выбор методов определяется их доступностью. Со временем стали определять содержание в воде органических соединений и продуктов их разложений (аммиак, нит­риты, нитраты).

Третий этап охарактеризовался преимущественным изучением бактери­ального состава воды и переходом к гигиеническому нормированию качест­ва питьевой воды. Особое значение имело открытие Робера Коха. Участвуя в 1891 году в ликвидации крупной эпидемии холеры в Гамбурге-Альтоне, Кох установил не только факт отсутствия заболеваний в Альтоне, но и связал его с очисткой речной воды на сапрофитную микрофлору показали, что вода альтонского водопровода содержала не более 100 сапрофитов в одном мл. А в воде гамбургского водопровода было гораздо больше микро-

бов. На этом основании Кох сделал вывод, имевший характер количествен­ной оценки, что вода, в которой находится не более 100 сапрофитов в 1мл, не содержит патогенных микробов (в данном случае холерных вибрио­нов). Это первый пример, когда гигиенический норматив был предложен в результате излучения степени влияния воды не организм. Вместе с тем появилось представление о качестве воды не только водоисточника, но и питьевой воды. В дальнейшем в практику оценки эффективности очистки был внедрен метод определения титра кишечной палочки.

Кишечная палочка, являясь обязательным и постоянным обитателем кишечника человека, находится в тесной связи с группой патогенных мик­роорганизмов-возбудителей кишечных инфекций человека. По этой причине обнаружение ее в воде в большей мере свидетельствует о наличии степени эпидемической опасности. Не маловажно, что метод определения кишечной палочки в воде высоко надежен и доступен для лабораторий. В 1914 году в США был опубликован первый стандарт качества питьевой воды, которым нормировался только бактериальный состав - общий счет колоний и титр кишечной палочки.

В первом стандарте оказался воплощенным новый принцип нормирова­ния качества воды, исходивший из ее пригодности для питьевых целей, безопасности и безвредности для здоровья населения. Третий этап разви­тия гигиенического нормирования можно назвать переломным. Начиная с этого времени проблема гигиены воды приобрела физиолого-гигиеническое направление.

На четвертом этапе по мере накопления новых знаний, научных дан­ных о влиянии на организм человека химических факторов внешней среды появилась необходимость пересмотра стандарта с целью его расширения.

В последнем утвержденном ГОСТе 2874-82 "Вода питьевая". Гигиени­ческие требования и контроль качества" на основании новых научных дан­ных опыта эксплуатации водопроводов и контроля за их работой был уточ­нен ряд нормативов, подчеркнуто, что качество воды, соответствующее требованиям ГОСТа, должно обеспечиваться на протяжении всей водопро­водной сети и не зависит от вида источника водоснабжения и системы об­работки воды.

Требования ГОСТа, обеспечивающие безопасность питьевой воды в эпидемическом отношении, основываются на косвенных показателях - коли­честве сапрофитов в 1мл воды и индексе бактерий группы кишечной палоч­ки.

Требования ГОСТа к химическому составу воды включают 20 показате­лей для веществ, встречающихся в природных водах и добавляемых в нее при обработке на очистных сооружениях. При этом одна группа показате­лей призвана обеспечить безопасность воды в токсикологическом отноше­нии, другая - не допускать нарушения органолептических свойств воды.

ГОСТ регламентирует требования к качеству питьевой воды, подавае­мой централизованными системами хозяйственно-питьевого водоснабжения из местных водоисточников (шахтные колодцы, каптажи родников и пр.) безопасность водопользования обеспечивается нормативами, в соответс­твии с которыми вода местных источников должна иметь прозрачность не менее 30 см по шрифту Снеллена, цветность не более 300, привкус и за­пах при 10 20 0С не более 2-3 баллов, содержание нитратов 45 мг/л, ко­ли-индекс не более 10. Возможность некоторого смягчения требований к качеству воды местных источников водоснабжения обусловлена большей возможностью контроля за эпидемической обстановкой в зоне питания ис­точника водоснабжения и ограниченностью контингента, пользующихся ко­лодцем или каптажом.

 



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 246; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.172.249 (0.009 с.)