Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Design of environmental monitoring programmes

Поиск

Water quality monitoring is of little use without a clear and unambiguous definition of the reasons for the monitoring and the objectives that it will satisfy. Almost all monitoring (except perhaps remote sensing) is in some part invasive of the environment under study and extensive and poorly planned monitoring carries a risk of damage to the environment. This may be a critical consideration in wilderness areas or when monitoring very rare organisms or those that are averse to human presence. Some monitoring techniques, such gill netting fish to estimate populations, can be very damaging, at least to the local population and can also degrade public trust in scientists carrying out the monitoring.

Almost all mainstream environmentalism monitoring projects form part of an overall monitoring strategy or research field, and these field and strategies are themselves derived from the high levels objectives or aspirations of an organisation. Unless individual monitoring projects fit into a wider strategic framework, the results are unlikely to be published and the environmental understanding produced by the monitoring will be lost.[12][13]

Parameters

Chemical

Analyzing water samples for pesticides

The range of chemical parameters that have the potential to affect any ecosystem is very large and in all monitoring programmes it is necessary to target a suite of parameters based on local knowledge and past practice for an initial review. The list can be expanded or reduced based on developing knowledge and the outcome of the initial surveys.

Freshwater environments have been extensively studied for many years and there is a robust understanding of the interactions between chemistry and the environment across much of the world. However, as new materials are developed and new pressures come to bear, revisions to monitoring programmes will be required. In the last 20 years acid rain, synthetic hormone analogues, halogenated hydrocarbons, greenhouse gases and many others have required changes to monitoring strategies.

Biological

In ecological monitoring, the monitoring strategy and effort is directed at the plants and animals in the environment under review and is specific to each individual study.

However, in more generalised environmental monitoring, many animals act as robust indicators of the quality of the environment that they are experiencing or have experienced in the recent past.[14] One of the most familiar examples is the monitoring of numbers of Salmonid fish such as Brown trout or Salmon in river systems and lakes to detect slow trends in adverse environmental effects. The steep decline in salmonid fish populations was one of the early indications of the problem that later became known as acid rain.

In recent years much more attention has been given to a more holistic approach in which the ecosystem health is assessed and used as the monitoring[15] tool itself. It is this approach that underpins the monitoring protocols of the Water Framework Directive in the European Union.

Radiological

Radiation monitoring involves the measurement of radiation dose or radionuclide contamination for reasons related to the assessment or control of exposure to ionizing radiationor radioactive substances, and the interpretation of the results.[16] The ‘measurement’ of dose often means the measurement of a dose equivalent quantity as a proxy (i.e. substitute) for a dose quantity that cannot be measured directly. Also, sampling may be involved as a preliminary step to measurement of the content of radionuclides in environmental media. The methodological and technical details of the design and operation of monitoring programmes and systems for different radionuclides, environmental media and types of facility are given in IAEA Safety Guide RS–G-1.8 and in IAEA Safety Report No. 64.

Radiation monitoring is often carried out using networks of fixed and deployable sensors such as the US Environmental Protection Agency's Radnet and the SPEEDI network in Japan. Airborne surveys are also made by organizations like the Nuclear Emergency Support Team.

Microbiological

Bacteria and viruses are the most commonly monitored groups of microbiological organisms and even these are only of great relevance where water in the aquatic environment is subsequently used as drinking water or where water contact recreation such as swimming or canoeing is practised.

Although pathogens are the primary focus of attention, the principal monitoring effort is almost always directed at much more common indicator species such as Escherichia coli, supplemented by overall coliform bacteria counts. The rationale behind this monitoring strategy is that most human pathogens originate from other humans via the sewagestream. Many sewage treatment plants have no sterilisation final stage and therefore discharge an effluent which, although having a clean appearance, still contains many millions of bacteria per litre, the majority of which are relatively harmless coliform bacteria. Counting the number of harmless (or less harmful) sewage bacteria allows a judgement to be made about the probability of significant numbers of pathogenic bacteria or viruses being present. Where E. coli or coliform levels exceed pre-set trigger values, more intensive monitoring including specific monitoring for pathogenic species is then initiated.

Populations

Monitoring strategies can produce misleading answers when relaying on counts of species or presence or absence of particular organisms if there is no regard to population size. Understanding the populations dynamics of an organism being monitored is critical.

As an example if presence or absence of a particular organism within a 10 km square is the measure adopted by a monitoring strategy, then a reduction of population from 10,000 per square to 10 per square will go unnoticed despite the very significant impact experienced by the organism.

Monitoring programmes

All scientifically reliable environmental monitoring is performed in line with a published programme. The programme may include the overall objectives of the organisation, references to the specific strategies that helps deliver the objective and details of specific projects or tasks within those strategies. However the key feature of any programme is the listing of what is being monitored and how that monitoring is to take place and the time-scale over which it should all happen. Typically, and often as an appendix, a monitoring programme will provide a table of locations, dates and sampling methods that are proposed and which, if undertaken in full, will deliver the published monitoring programme.

There are a number of commercial software packages which can assist with the implementation of the programme, monitor its progress and flag up inconsistencies or omissions but none of these can provide the key building block which is the programme itself.



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 151; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.27.225 (0.008 с.)