Метаболічний рівень регуляції 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Метаболічний рівень регуляції



Метаболічний рівень регуляції забезпечує узгодженість процесів обміну за рахунок зміни концентрації метаболітів. Метаболіти – це низькомолекулярні сполуки, які потрапляють в організм з продуктами харчування або утворюються в результаті послідовних ферментативних перетворень різних сполук. Оскільки основна маса метаболітів утворюється внаслідок ферментативних перетворень, то даний рівень регуляції забезпечується за рахунок заміни активності ферментних систем.

Регуляція активності ферментних систем здійснюється кількома шляхами – за участю специфічних і неспецифічних механізмів та зміни об'єму синтезу ферментів. Перший та другий механізми регуляції включають ізостеричну та алостеричну взаємодію, а також вплив температури, значення рН, концентрації субстратів та ін. Зміна об'єму синтезу ферментів забезпечується, як правило, за рахунок індукції та репресії.

Зміна концентрації субстратів досягається переважно за рахунок компартменізації, скоординованості біохімічних перетворень у просторі і часі. Окремі біохімічні перетворення локалізовані на певних ділянках клітин – в органелах, цитоплазмі чи мембранних системах, де і зосереджені відповідні ферментні системи. Синтез білка здійснюється на рибосомах, гліколіз – у цитоплазмі, процеси біологічного окислення – на внутрішній мембрані мітохондрій. Завдяки цьому численні біохімічні перетворення, досить часто зовсім протилежні (розщеплення і синтез), здійснюються одночасно, не заважаючи один одному, тобто за рахунок компартменізації забезпечується просторова скоординованість біохімічних перетворень.

Перебіг біохімічних реакцій у живих організмах здійснюється також у суворій послідовності, внаслідок чого створюється, як правило, ланцюг взаємопов'язаних реакцій, в яких кінцеві продукти одного перетворення можуть бути використані у вигляді вихідних продуктів для наступного перетворення. Так, анаеробне перетворення вуглеводів (гліколіз) включає одинадцять послідовних реакцій, кожна з яких створює умови для перебігу наступної, тобто швидкість кожної з цих реакцій залежить від метаболітів, що утворюються в результаті попередньої. При цьому швидкість процесу гліколізу може регулюватись як певними метаболітами, що утворюються внаслідок даного перетворення, так і кінцевими продуктами гліколізу (молочна кислота може гальмувати утворення вихідного субстрату – глюкозо-6-фосфату).

Регуляція метаболічних реакцій здійснюється за принципом зворотного зв'язку (ретрогальмування). Важлива роль у забезпеченні даного процесу належить мультиферментним комплексам і системам, в яких індивідуальні ферменти організовані так, що продукт попередньої реакції є субстратом наступної. Прикладом може бути піруватдекарбоксилазний комплекс, синтетаза жирних кислот та ін.

Метаболіти, за участю яких забезпечується регуляція швидкості ферментативних перетворень, можуть мати екзогенне походження. Так, синтез білка в гетеротрофних організмах лімітується надходженням незамінних амінокислот.

Регуляція активності ферментних систем може здійснюватись за рахунок зміни концентрації ефекторів (активаторів та інгібіторів) алостеричних ферментів. Зв'язуючись з алостеричним центром, ефектори можуть кооперативно змінювати конформацію субодиниць, що призводить до зміни просторової орієнтації як усієї молекули ферменту, так і ділянок її, що відповідають за перетворення субстрату (активних центрів), а це спричиняє зміну активності ферменту в бік її зниження чи підвищення. Ефекторами, як правило, є низькомолекулярні метаболіти, іони металів, гормони. Кількість алостеричних ферментів при цьому не змінюється.

Слід зазначити, що метаболіти можуть виступати і в ролі ізостеричних (конкурентних) інгібіторів ферментів.

Активність ферментів значною мірою залежить від зміни умов, в яких проходить ферментативне перетворення. Ферменти досить чутливі до зміни температури, рН середовища, іонної сили тощо.

Регуляція активності ферментних систем може забезпечуватись також за рахунок зміни кількості ферментів. Кількість ферментів у клітині залежить від наявності білків-репресорів, які кодуються геном-регулятором. Залежно від того, в якому стані утворюється білок-репресор, розрізняють індукцію (збільшення) та репресію (зменшення) синтезу ферментів.

У вигляді індукторів, як правило, виступають низькомолекулярні сполуки, продукти ферментативних перетворень (метаболіти). Ферменти, що утворюються внаслідок індукції, називаються індукованими.

Оперонний рівень регуляції

Даний рівень регуляції процесів життєдіяльності забезпечується на рівні оперона. Оперон – ділянка ДНК, обмежена промотором і термінатором, яка знаходиться під регуляторною дією гена-регулятора і забезпечує синтез молекул іРНК. Оперон може бути моно- і поліцистронним. У першому випадку він забезпечує синтез однієї молекули іРНК, яка може виступати в ролі матриці в процесі синтезу білка, а в другому – кількох молекул іРНК. Отже, на рівні оперона забезпечується регуляція синтезу іРНК, які використовуються в ролі матриці в процесі синтезу білка на рибосомах. Білки – ферменти, синтез яких здійснюється при трансляції, забезпечують численні ферментативні перетворення різних субстратів. Слід зазначити, що при трансляції здійснюється також синтез білків, які не мають ферментативних властивостей (гістонові, рибосомальні й ін.), які забезпечують перебіг досить важливих процесів обміну. Синтез цих білків також регулюється на рівні оперона за рахунок зміни об'єму синтезу іРНК при транскрипції.

Регуляція синтезу іРНК на оперонному рівні забезпечується за рахунок кількох механізмів, серед яких важливе значення має індукція і репресія, посттранскрипційна модифікація, взаємодія з хроматином гормон-рецепторних комплексів тощо. За участю даних механізмів здійснюється зміна метаболічної активності та регуляція функцій геному.

Клітинний рівень регуляції

Якщо врахувати, що клітина є основною структурною одиницею живих організмів, то інтенсивність перебігу обмінних процесів у ній відіграє вирішальну роль у забезпеченні процесів життєдіяльності. Механізми, що забезпечують регуляцію процесів життєдіяльності на клітинному рівні, досить різноманітні. Серед них найважливіше значення мають ядерно-цитоплазматичні відносини, посттранскрипційні та посттрансляційна модифікації макромолекул, макромолекулярна взаємодія, транспорт речовин та іонів.

Суть ядерно-цитоплазматичних взаємовідносин полягає у взаємозалежному контролі синтезу важливих біополімерів клітин. Так, синтез структурних компонентів деяких біополімерів, зокрема субодиниць ферментів, може здійснюватись на рибосомальному апараті в цитоплазмі та автономному апараті білкового синтезу в мітохондріях чи хлоропластах.

Регуляція синтезу субодиниць ферментів у першому випадку забезпечується за рахунок ядерного апарата клітини, а в другому – відповідно хлоропластного чи мітохондріального геному, локалізованого в цитоплазмі.

Такий ядерно-цитоплазматичний контроль характерний для синтезу багатьох білків-ферментів, зокрема таких, як цитохромоксидаза, протонна Н+-АТФ-аза, рибулозо-1,5-дифосфаткарбоксилаза, а також білків, що входять до складу мембранних структур клітини. За рахунок ядерно-цитоплазматичних відносин забезпечується злагоджена робота білок-синтезуючих систем клітини, внаслідок чого здійснюється синтез численних білків з характерними властивостями та функціями, підтримуються на належному рівні всі процеси обміну в клітині.

Суть посттранскрипційної та посттрансляційної модифікацій біомолекул полягає у перетворенні попередників, що утворюються в результаті транскрипції чи трансляції на функціонально-активні молекули. Посттранскрипційна модифікація різних видів РНК, що утворюються в процесі транскрипції (тРНК, мРНК, рРНК), полягає в метилюванні азотистих основ мононуклеотидів, вирізанні певної послідовності нуклеозидмонофосфатів, приєднанні певних олігонуклеотидних фрагментів та функціональних груп тощо. Забезпечується це з участю специфічних ферментів, характерних для певного виду модифікацій. Прикладом може бути посттранскрипційна модифікація іРНК, яка здійснюється в результаті процесингу і сплайсингу первинного транскрипту.

Процеси посттранскрипційної модифікації різних видів РНК клітини називаються дозріванням. Формування функціонально-активних молекул у процесі посттранскрипційної модифікації значною мірою визначає інтенсивність білкового синтезу в клітині.

Важливе значення у забезпеченні перебігу метаболічних процесів в організмі має також посттрансляційна модифікація білкових молекул, синтез яких здійснюється на рибосомальному апараті клітини. Суть посттрансляційної модифікації полягає у відщепленні пептидних фрагментів, приєднанні функціональних груп та модифікації залишків амінокислот тощо. Прикладом посттрансляційної модифікації є глікозилювання білків – приєднання вуглеводних компонентів, залишків фосфату, внаслідок чого утворюються різні групи складних білків. Посттранскрипційна модифікація забезпечує утворення множинних форм ферментів, які відіграють важливу роль у регуляції метаболічних процесів. Регуляція процесів життєдіяльності на клітинному рівні забезпечується також за рахунок взаємодії між макромолекулами (білок – білкової, білок – нуклеїнової, білок – ліпідної, вуглевод – білкової взаємодії).

Взаємодія між різними біомолекулами в клітині забезпечує злагодженість та скоординованість біохімічних перетворень, характерних для живих систем. Найсуттєвішим серед інших видів взаємодії є білок – білкова взаємодія.

Даний вид взаємодії сприяє утворенню мультиферментних комплексів, ферментів мультимерів, які забезпечують поетапне перетворення різних субстратів, а також утворення гормон-рецепторних комплексів, що забезпечують дію гормонів пептидної та білкової природи.

Внаслідок білок-ліпідної взаємодії забезпечується структура та функції мембранних систем клітини, визначається рівень біологічної активності мембранно-зв'язаних ферментів, ступінь проникності мембран для різних метаболітів тощо.



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 251; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.254.94 (0.006 с.)