Микропроцессор 8086/8088. регистры, сегментация, методы адресаци 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Микропроцессор 8086/8088. регистры, сегментация, методы адресаци



Регистровая адресация

Операнды могут располагаться в любых регистрах общего назначения и сегментных регистрах. В этом случае в тексте программы указывается название соответствующего регистра, например команда, копирующуя в регистр AX содержимое регистра BX, записывается как

mov ax,bx

Непосредственная адресация

Некоторые команды (все арифметические команды, кроме деления) позволяют указывать один из операндов непосредственно в тексте программы, например команда

mov ax,2

помещает в регистр AX число 2.

Прямая адресация

Если известен адрес операнда, располагающегося в памяти, можно использовать этот адрес. Если операнд — слово, находящееся в сегменте, на который указывает ES, со смещением от начала сегмента 0001, то команда

mov ax,es:0001

поместит это слово в регистр AX. В реальных программах обычно для задания статических переменных используют директивы определения данных (глава 3.3), которые позволяют ссылаться на статические переменные не по адресу, а по имени. Тогда, если в сегменте, указанном в ES, была описана переменная word_var размером в слово, можно записать ту же команду как

mov ax,es:word_var

В таком случае ассемблер сам заменит слово «word_var» на соответствующий адрес. Если селектор сегмента данных находится в DS, имя сегментного регистра при прямой адресации можно не указывать, DS используется по умолчанию. Прямая адресация иногда называется адресацией по смещению.

Косвенная адресация

По аналогии с регистровыми и непосредственными операндами адрес операнда в памяти также можно не указывать непосредственно, а хранить в любом регистре. До 80386 для этого можно было использовать только BX, SI, DI и BP, но потом эти ограничения были сняты и адрес операнда разрешили считывать также и из EAX, EBX, ECX, EDX, ESI, EDI, EBP и ESP (но не из AX, CX, DX или SP напрямую — надо использовать EAX, ECX, EDX, ESP соответственно или предварительно скопировать смещение в BX, SI, DI или BP). Например, следующая команда помещает в регистр AX слово из ячейки памяти, селектор сегмента которой находится в DS, а смещение — в BX:

mov ax,[bx]

Адресация по базе со сдвигом

Теперь скомбинируем два предыдущих метода адресации: следующая команда

mov ax,[bx+2]

помещает в регистр AX слово, находящееся в сегменте, указанном в DS, со смещением на 2 большим, чем число, находящееся в BX. Так как слово занимает ровно два байта, эта команда поместила в AX слово, непосредственно следующее за тем, которое есть в предыдущем примере. Такая форма адресации используется в тех случаях, когда в регистре находится адрес начала структуры данных, а доступ надо осуществить к какому-нибудь элементу этой структуры. Другое важное применение адресации по базе со сдвигом — доступ из подпрограммы к параметрам, переданным в стеке, используя регистр BP (EBP) в качестве базы и номер параметра в качестве смещения, что детально разобрано в параграфе 5.2. Другие допустимые формы записи этого способа адресации:

mov ax,[bp]+2 mov ax,2[bp]

Косвенная адресация с масштабированием

Этот метод адресации полностью идентичен предыдущему, за исключением того, что с его помощью можно прочитать элемент массива слов, двойных слов или учетверенных слов, просто поместив номер элемента в регистр:

mov ax,[esi*2]+2

Множитель, который может быть равен 1, 2, 4 или 8, соответствует размеру элемента массива — байту, слову, двойному слову, учетверенному слову соответственно.

Арифметические команды

Все команды из этого раздела, кроме команд деления и умножения, изменяют флаги OF, SF, ZF, AF, CF, PF в соответствии с назначением каждого из этих флагов (см. главу 2.1.4).

 Команда: ADD приемник, источник

 Назначение: Сложение

 Процессор: 8086

Команда выполняет арифметическое сложение приемника и источника, помещает сумму в приемник, не изменяя содержимое источника. Приемник может быть регистром или переменной, источник может быть числом, регистром или переменной, но нельзя использовать переменную одновременно и для источника, и для приемника. Команда ADD никак не различает числа со знаком и без знака, но, употребляя значения флагов CF (перенос при сложении чисел без знака), OF (перенос при сложении чисел со знаком) и SF (знак результата), можно использовать ее и для тех, и для других.

 Команда: ADC приемник, источник

 Назначение: Сложение с переносом

 Процессор: 8086

Эта команда во всем аналогична ADD, кроме того, что она выполняет арифметическое сложение приемника, источника и флага СF. Пара команд ADD/ADC используется для сложения чисел повышенной точности. Сложим, например, два 64-битных целых числа: пусть одно из них находится в паре регистров EDX:EAX (младшее двойное слово (биты 0 – 31) — в ЕАХ и старшее (биты 32 – 63) — в EDX), а другое — в паре регистров ЕВХ:ЕСХ:

add eax,ecx

adc edx,ebx

Если при сложении младших двойных слов произошел перенос из старшего разряда (флаг CF = 1), то он будет учтен следующей командой ADC.

 Команда: XADD приемник, источник

 Назначение: Обменять между собой и сложить

 Процессор: 80486

Выполняет сложение, помещает содержимое приемника в источник, — сумму операндов — в приемник. Источник всегда регистр, приемник может быть регистром и переменной.

 Команда: SUB приемник, источник

 Назначение: Вычитание

 Процессор: 8086

Вычитает источник из приемника и помещает разность в приемник. Приемник может быть регистром или переменной, источник может быть числом, регистром или переменной, но нельзя использовать переменную одновременно и для источника, и для приемника. Точно так же, как и команда ADD, SUB не делает различий между числами со знаком и без знака, но флаги позволяют использовать ее как для тех, так и для других.

 Команда: SBB приемник, источник

 Назначение: Вычитание с займом

 Процессор: 8086

Эта команда во всем аналогична SUB, кроме того, что она вычитает из приемника значение источника и дополнительно вычитает значение флага CF. Так, можно использовать эту команду для вычитания 64-битных чисел в EDX:EAX и ЕВХ:ЕСХ аналогично ADD/ADC:

sub eax,ecx

sbb edx,ebx

Если при вычитании младших двойных слов произошел заем, то он будет учтен при вычитании старших.

 Команда: IMUL источник
IMUL приемник, источник
IMUL приемник, источник1, источник2

 Назначение: Умножение чисел со знаком

 Процессор: 8086
80386
80186

Эта команда имеет три формы, различающиеся числом операндов:

1. IMUL источник: источник (регистр или переменная) умножается на AL, АХ или ЕАХ (в зависимости от размера операнда), и результат располагается в АХ, DX:AX или EDX:EAX соответственно.

2. IMUL приемник,источник: источник (число, регистр или переменная) умножается на приемник (регистр), и результат заносится в приемник.

3. IMUL приемник,источник1,источник2: источник 1 (регистр или переменная) умножается на источник 2 (число), и результат заносится в приемник (регистр).

Во всех трех вариантах считается, что результат может занимать в два раза больше места, чем размер источника. В первом случае приемник автоматически оказывается достаточно большим, но во втором и третьем случаях могут произойти переполнение и потеря старших бит результата. Флаги OF и CF будут равны единице, если это произошло, и нулю, если результат умножения поместился целиком в приемник (во втором и третьем случаях) или в младшую половину приемника (в первом случае).

Значения флагов SF, ZF, AF и PF после команды IMUL не определены.

 Команда: MUL источник

 Назначение: Умножение чисел без знака

 Процессор: 8086

Выполняет умножение содержимого источника (регистр или переменная) и регистра AL, АХ, ЕАХ (в зависимости от размера источника) и помещает результат в АХ, DX:AX, EDX:EAX соответственно. Если старшая половина результата (АН, DX, EDX) содержит только нули (результат целиком поместился в младшую половину), флаги CF и OF устанавливаются в 0, иначе — в 1. Значение остальных флагов (SF, ZF, AF и PF) не определено.

 Команда: IDIV источник

 Назначение: Целочисленное деление со знаком

 Процессор: 8086

Выполняет целочисленное деление со знаком AL, АХ или ЕАХ (в зависимости от размера источника) на источник (регистр или переменная) и помещает результат в AL, АХ или ЕАХ, а остаток — в АН, DX или EDX соответственно. Результат всегда округляется в сторону нуля, знак остатка всегда совпадает со знаком делимого, абсолютное значение остатка всегда меньше абсолютного значения делителя. Значения флагов CF, OF, SF, ZF, AF и PF после этой команды не определены, а переполнение или деление на ноль вызывает исключение #DE (ошибка при делении) в защищенном режиме и прерывание 0 — в реальном.

 Команда: DIV источник

 Назначение: Целочисленное деление без знака

 Процессор: 8086

Выполняет целочисленное деление без знака AL, АХ или ЕАХ (в зависимости от размера источника) на источник (регистр или переменная) и помещает результат в AL, АХ или ЕАХ, а остаток — в АН, DX или EDX соответственно. Результат всегда округляется в сторону нуля, абсолютное значение остатка всегда меньше абсолютного значения делителя. Значения флагов CF, OF, SF, ZF, AF и PF после этой команды не определены, а переполнение или деление на ноль вызывает исключение #DE (ошибка при делении) в защищенном режиме и прерывание 0 — в реальном.

 Команда: INC приемник

 Назначение: Инкремент

 Процессор: 8086

Увеличивает приемник (регистр или переменная) на 1. Единственное отличие этой команды от ADD приемник,1 состоит в том, что флаг CF не затрагивается. Остальные арифметические флаги (OF, SF, ZF, AF, PF) устанавливаются в соответствии с результатом сложения.

 Команда: DEC приемник

 Назначение: Декремент

 Процессор: 8086

Уменьшает приемник (регистр или переменная) на 1. Единственное отличие этой команды от SUB приемник,1 состоит в том, что флаг CF не затрагивается. Остальные арифметические флаги (OF, SF, ZF, AF, PF) устанавливаются в соответствии с результатом вычитания.

 Команда: NEG приемник

 Назначение: Изменение знака

 Процессор: 8086

Выполняет над числом, содержащимся в приемнике (регистр или переменная), операцию дополнения до двух. Эта операция эквивалентна обращению знака операнда, если рассматривать его как число со знаком. Если приемник равен нулю, флаг CF устанавливается в 0, иначе — в 1. Остальные флаги (OF, SF, ZF, AF, PF) устанавливаются в соответствии с результатом операции.


6.команды пересылки и преобразования данных

Пересылка данных

 Команда: MOV приемник, источник

 Назначение: Пересылка данных

 Процессор: 8086

Базовая команда пересылки данных. Копирует содержимое источника в приемник, источник не изменяется. Команда MOV действует аналогично операторам присваивания из языков высокого уровня, то есть команда

mov ax,bx

эквивалентна выражению

ах:= bх;

языка Паскаль или

ах = bх;

языка С, за исключением того, что команда ассемблера позволяет работать не только с переменными в памяти, но и со всеми регистрами процессора.

В качестве источника для MOV могут использоваться: число (непосредственный операнд), регистр общего назначения, сегментный регистр или переменная (то есть операнд, находящийся в памяти). В качестве приемника — регистр общего назначения, сегментный регистр (кроме CS) или переменная. Оба операнда должны быть одного и того же размера — байт, слово или двойное слово.

Нельзя выполнять пересылку данных с помощью MOV из одной переменной в другую, из одного сегментного регистра в другой и нельзя помещать в сегментный регистр непосредственный операнд — эти операции выполняют двумя командами MOV (из сегментного регистра в обычный и уже из него в другой сегментный) или парой команд PUSH/POP.

 

 Команда: CMOVcc приемник, источник

 Назначение: Условная пересылка данных

 Процессор: P6

Это набор команд, которые копируют содержимое источника в приемник, если удовлетворяется то или иное условие (см. табл. 5). Источником может быть регистр общего назначения или переменная, а приемником — только регистр. Условие, которое должно удовлетворяться, — просто равенство нулю или единице тех или иных флагов из регистра FLAGS, но, если использовать команды CMOVcc сразу после команды СМР (сравнение) с теми же операндами, условия приобретают особый смысл, например:

cmp ах,bх; сравнить ах и bх

cmovl ax,bx; если ах < bх, скопировать bх в ах

Слова «выше» и «ниже» в таблице 5 относятся к сравнению чисел без знака, слова «больше» и «меньше» учитывают знак.

 Команда: XCHG операнд1, операнд2

 Назначение: Обмен операндов между собой

 Процессор: 8086

Содержимое операнда 2 копируется в операнд 1, а старое содержимое операнда 1 — в операнд 2. XCHG можно выполнять над двумя регистрами или над регистром и переменной.

xchg eax,ebx; то же, что три команды на языке С:

; temp = eax; eax = ebx; ebx = temp;

xchg al,al; а эта команда не делает ничего

 Команда: BSWAP регистр32

 Назначение: Обмен байт внутри регистра

 Процессор: 80486

Обращает порядок байт в 32-битном регистре. Биты 0 – 7 (младший байт младшего слова) меняются местами с битами 24 – 31 (старший байт старшего слова), а биты 8 – 15 (старший байт младшего слова) меняются местами с битами 16 – 23 (младший байт старшего слова).

mov eax,12345678h

bswap eax; теперь в еах находится 78563412h

Чтобы обратить порядок байт в 16-битном регистре, следует использовать команду XCHG:

xchg al,ah; обратить порядок байт в АХ

В процессорах Intel команду BSWAP можно использовать и для обращения порядка байт в 16-битных регистрах, но в некоторых совместимых процессорах других фирм этот вариант BSWAP не реализован.

 Команда: PUSH источник

 Назначение: Поместить данные в стек

 Процессор: 8086

Помещает содержимое источника в стек. Источником может быть регистр, сегментный регистр, непосредственный операнд или переменная. Фактически эта команда копирует содержимое источника в память по адресу SS:[ESP] и уменьшает ESP на размер источника в байтах (2 или 4). Команда PUSH практически всегда используется в паре с POP (считать данные из стека). Так, например, чтобы скопировать содержимое одного сегментного регистра в другой (что нельзя выполнить одной командой MOV), можно использовать такую последовательность команд:

push cs

pop ds; теперь DS указывает на тот же сегмент, что и CS

Другое частое применение команд PUSH/POP — временное хранение переменных, например:

push eax; сохраняет текущее значение ЕАХ

...; здесь располагаются какие-нибудь команды,

; которые используют ЕАХ, например CMPXCHG

pop eax; восстанавливает старое значение ЕАХ

Начиная с 80286, команда PUSH ESP (или SP) помещает в стек значение ESP до того, как эта же команда его уменьшит, в то время как на 8086 SP помещался в стек уже уменьшенным на два.

 Команда: POP приемник

 Назначение: Считать данные из стека

 Процессор: 8086

Помещает в приемник слово или двойное слово, находящееся в вершине стека, увеличивая ESP на 2 или 4 соответственно. POP выполняет действие, полностью обратное PUSH. Приемником может быть регистр общего назначения, сегментный регистр, кроме CS (чтобы загрузить CS из стека, надо воспользоваться командой RET), или переменная. Если в роли приемника выступает операнд, использующий ESP для косвенной адресации, команда POP вычисляет адрес операнда уже после того, как она увеличивает ESP.

 Команда: PUSHA
PUSHAD

 Назначение: Поместить в стек все регистры общего назначения

 Процессор: 80186
80386

PUSHA помещает в стек регистры в следующем порядке: АХ, СХ, DX, ВХ, SP, ВР, SI и DI. PUSHAD помещает в стек ЕАХ, ЕСХ, EDX, ЕВХ, ESP, EBP, ESI и EDI. (В случае SP и ESP используется значение, которое находилось в этом регистре до начала работы команды.) В паре с командами POPA/POPAD, считывающими эти же регистры из стека в обратном порядке, это позволяет писать подпрограммы (обычно обработчики прерываний), которые не должны изменять значения регистров по окончании своей работы. В начале такой подпрограммы вызывают команду PUSHA, а в конце — РОРА.

 

 Команда: POPA
POPAD

 Назначение: Загрузить из стека все регистры общего назначения

 Процессор: 80186
80386

Эти команды выполняют действия, полностью обратные действиям PUSHA и PUSHAD, за исключением того, что помещенное в стек значение SP или ESP игнорируется. РОРА загружает из стека DI, SI, BP, увеличивает SP на два, загружает ВХ, DX, CX, AX, a POPAD загружает EDI, ESI, ЕВР, увеличивает ESP на 4 и загружает ЕВХ, EDX, ЕСХ, ЕАХ.

 Команда: IN приемник, источник

 Назначение: Считать данные из порта

 Процессор: 8086

Копирует число из порта ввода-вывода, номер которого указан в источнике, в приемник. Приемником может быть только AL, АХ или ЕАХ. Источник — или непосредственный операнд, или DX, причем можно указывать только номера портов не больше 255.

 Команда: OUT приемник, источник

 Назначение: Записать данные в порт

 Процессор: 8086

Копирует число из источника (AL, АХ или ЕАХ) в порт ввода-вывода, номер которого указан в приемнике. Приемник может быть либо непосредственным номером порта, либо регистром DX. На командах IN и OUT строится все общение процессора с устройствами ввода-вывода — клавиатурой, жесткими дисками, различными контроллерами, и используются они, в первую очередь, в драйверах устройств. Например, чтобы включить динамик PC, достаточно выполнить команды:

in al,61h

or al,3

out 61h,al

Программирование портов ввода-вывода рассмотрено подробно в главе 5.10.

 Команда: CWD

 Назначение: Конвертирование слова в двойное слово

 Процессор: 8086

 Команда: CDQ

 Назначение: Конвертирование двойного слова в учетверенное

 Процессор: 80386

Команда CWD превращает слово в AХ в двойное слово, младшая половина которого (биты 0 – 15) остается в АХ, а старшая (биты 16 – 31) располагается в DX. Команда CDQ выполняет аналогичное действие по отношению к двойному слову в ЕАХ, расширяя его до учетверенного слова в EDX:EAX. Эти команды всего лишь устанавливают все биты регистра DX или EDX в значение, равное значению старшего бита регистра АХ или ЕАХ, сохраняя таким образом его знак.

 Команда: CBW

 Назначение: Конвертирование байта в слово

 Процессор: 8086

 Команда: CWDE

 Назначение: Конвертирование слова в двойное слово

 Процессор: 80386

CBW расширяет байт, находящийся в регистре AL, до слова в АХ, CWDE расширяет слово в АХ до двойного слова в ЕАХ. CWDE и CWD отличаются тем, что CWDE располагает свой результат в ЕАХ, в то время как CWD, команда, выполняющая точно такое же действие, располагает результат в паре регистров DX:AX. Так же как и команды CWD/CDQ, расширение выполняется путем установки каждого бита старшей половины результата равным старшему биту исходного байта или слова, то есть:

mov al,0F5h; AL = 0F5h = 245 = -11

cbw; теперь АХ = 0FFF5h = 65 525 = -11

 

 Команда: MOWSX приемник, источник

 Назначение: Пересылка с расширением знака

 Процессор: 80386

Копирует содержимое источника (регистр или переменная размером в байт или слово) в приемник (16- или 32-битный регистр) и расширяет знак аналогично командам CBW/CWDE.

 Команда: MOWZX приемник, источник

 Назначение: Пересылка с расширением нулями

 Процессор: 80386

Копирует содержимое источника (регистр или переменная размером в байт или слово) в приемник (16- или 32-битный регистр) и расширяет нулями, то есть команда

movzx ax,bl

эквивалентна паре команд

mov al,bl

mov ah,0

 Команда: XLAT адрес
XLATB

 Назначение: Трансляция в соответствии с таблицей

 Процессор: 8086

Помещает в AL байт из таблицы в памяти по адресу ES:BX (или ES:EBX) со смещением относительно начала таблицы, равным AL. В качестве аргумента для XLAT в ассемблере можно указать имя таблицы, но эта информация никак не используется процессором и служит только как комментарий. Если этот комментарий не нужен, можно применить форму записи XLATB. В качестве примера использования XLAT можно написать следующий вариант преобразования шестнадцатеричного числа в ASCII-код соответствующего ему символа:

mov al,0Ch

mov bx, offset htable

xlatb

если в сегменте данных, на который указывает регистр ES, было записано

htable db "0123456789ABCDEF"

то теперь AL содержит не число 0Сh, а ASCII-код буквы «С». Разумеется, это преобразование можно выполнить, используя гораздо более компактный код всего из трех арифметических команд, который будет рассмотрен в описании команды DAS, но с XLAT можно выполнять любые преобразования такого рода.

 Команда: LEA приемник, источник

 Назначение: Вычисление эффективного адреса

 Процессор: 8086

Вычисляет эффективный адрес источника (переменная) и помещает его в приемник (регистр). С помощью LEA можно вычислить адрес переменной, которая описана сложным методом адресации, например по базе с индексированием. Если адрес 32-битный, а регистр-приемник 16-битный, старшая половина вычисленного адреса теряется, если наоборот, приемник 32-битный, а адресация 16-битная, то вычисленное смещение дополняется нулями.


Передача параметров в стеке

Параметры помещаются в стек сразу перед вызовом процедуры. Именно этот метод используют языки высокого уровня, такие как С и Pascal. Для чтения параметров из стека обычно используют не команду POP, а регистр ВР, в который помещают адрес вершины стека после входа в процедуру:

push parameter1; поместить параметр в стек push parameter2 call procedure add sp,4; освободить стек от параметров [...]procedure proc near push bp mov bp,sp mov ax,[bp+4]; считать параметр 2.; Его адрес в сегменте стека ВР + 4, потому что при выполнении; команды CALL в стек поместили адрес возврата - 2 байта для процедуры; типа NEAR (или 4 - для FAR), а потом еще и ВР - 2 байта mov bx,[bp+6]; считать параметр 1 рор bp retprocedure endp

Параметры в стеке, адрес возврата и старое значение ВР вместе называются активационной записью функции.

Для удобства ссылок на параметры, переданные в стеке, внутри функции иногда используют директивы EQU, чтобы не писать каждый раз точное смещение параметра от начала активационной записи (то есть от ВР), например так:

push X push Y push Z call xyzzy [...]xyzzy proc nearxyzzy_z equ [bp+8]xyzzy_y equ [bp+6]xyzzy_x equ [bp+4] push bp mov bp,sp mov ax,xyzzy_x;считать параметр X pop bp ret 6xyzzy endp

Конвенция Pascal

Самый очевидный способ выражения вызова процедуры или функции языка высокого уровня, после того как решено, что параметры передаются в стеке и возвращаются в регистре АХ/ЕАХ, — это способ, принятый в языке PASCAL (а также в BASIC, FORTRAN, ADA, OBERON, MODULA2), — просто поместить параметры в стек в естественном порядке. В этом случае запись

some_proc(a,b,c,d,e)

превращается в

push a push b push с push d push e call some_proc

Это значит, что процедура some_proc, во-первых, должна очистить стек по окончании работы (например, завершившись командой ret 10) и, во-вторых, параметры, переданные ей, находятся в стеке в обратном порядке:

some_proc proc push bp mov bp,sp; создать стековый кадрa equ [bp+12]; определения для простого; доступа к параметрамb equ [bp+10]c equ [bp+8]d equ [bp+6]e equ [bp+4]; текст процедуры, использующей параметры а, Ь, с, d, e ret 10some_proc endp

Этот код в точности соответствует усложненной форме директивы proc, которую поддерживают все современные ассемблеры:

some_proc proc PASCAL,а:word,b:word,с:word,d:word,e:word; текст процедуры, использующей параметры а, Ь, с, d, e.; Так как ВР используется в качестве указателя стекового кадра,; его использовать нельзя! ret; эта команда RET будет заменена на RET 10some_proc endp

Главный недостаток этого подхода — сложность создания функции с изменяемым числом параметров, аналогичных функции языка С printf. Чтобы определить число параметров, переданных printf, процедура должна сначала прочитать первый параметр, но она не знает его расположения в стеке. Эту проблему решает подход, используемый в С, где параметры передаются в обратном порядке.

Конвенция С

Этот способ передачи параметров используется в первую очередь в языках С и C++, а также в PROLOG и других. Параметры помещаются в стек в обратном порядке, и, в противоположность PASCAL-конвенции, удаление параметров из стека выполняет вызывающая процедура. Запись

some_proc(a,b,c,d,e)

превращается в

push e push d push с push b push a call some_proc add sp,10; освободить стек

Вызванная таким образом процедура может инициализироваться так: some_proc proc push bp mov bp,sp; создать стековый кадр a equ [bp+4]; определения для простого доступа к параметрам b equ [bp+6] с equ [bp+8] d equ [bp+10] e equ [bp+12]; текст процедуры, использующей параметры a, b, с, d, e pop bp ret some_proc endp

Ассемблеры поддерживают и такой формат вызова при помощи усложненной формы директивы proc с указанием языка С:

some_proc proc С,а:word,b:word,с:word,d:word,e:word; текст процедуры, использующей параметры a, b, с, d, e.; Так как BP применяется как указатель стекового кадра,; его использовать нельзя! retsome_proc endp

Мы не пользовались до сих пор этими формами записи процедур в ассемблере потому, что они скрывают от нас тот факт, что регистр ВР используется для хранения параметров и его ни в коем случае нельзя изменять, и, в случае PASCAL, что команда ret на самом деле — команда ret N.

Модели памяти задаются директивой.MODEL

.model модель,язык,модификатор

где модель — одно из следующих слов:

TINY — код, данные и стек размещаются в одном и том же сегменте размером до 64 Кб. Эта модель памяти чаще всего используется при написании на ассемблере небольших программ;

SMALL — код размещается в одном сегменте, а данные и стек — в другом (для их описания могут применяться разные сегменты, но объединенные в одну группу). Эту модель памяти также удобно использовать для создания программ на ассемблере;

COMPACT — код размещается в одном сегменте, а для хранения данных могут использоваться несколько сегментов, так что для обращения к данным требуется указывать сегмент и смещение (данные дальнего типа);

MEDIUM — код размещается в нескольких сегментах, а все данные — в одном, поэтому для доступа к данным используется только смещение, а вызовы подпрограмм применяют команды дальнего вызова процедуры;

LARGE и HUGE — и код, и данные могут занимать несколько сегментов;

FLAT — то же, что и TINY, но используются 32-битные сегменты, так что максимальный размер сегмента, содержащего и данные, и код, и стек, — 4 Мб.

Язык — необязательный операнд, принимающий значения C, PASCAL, BASIC, FORTRAN, SYSCALL и STDCALL. Если он указан, подразумевается, что процедуры рассчитаны на вызов из программ на соответствующем языке высокого уровня, следовательно, если указан язык C, все имена ассемблерных процедур, объявленных как PUBLIC, будут изменены так, чтобы начинаться с символа подчеркивания, как это принято в C.

Модификатор — необязательный операнд, принимающий значения NEARSTACK (по умолчанию) или FARSTACK. Во втором случае сегмент стека не будет объединяться в одну группу с сегментами данных.

После того как модель памяти установлена, вступают в силу упрощенные директивы определения сегментов, объединяющие действия директив SEGMENT и ASSUME. Кроме того, сегменты, объявленные упрощенными директивами, не требуется закрывать директивой ENDS — они закрываются автоматически, как только ассемблер обнаруживает новую директиву определения сегмента или конец программы.

Директива.CODE описывает основной сегмент кода

.code имя_сегмента

эквивалентно

_TEXT segment word public ’CODE’

для моделей TINY, SMALL и COMPACT и

name_TEXT segment word public ’CODE’

для моделей MEDIUM, HUGE и LARGE (name — имя модуля, в котором описан данный сегмент). В этих моделях директива.CODE также допускает необязательный операнд — имя определяемого сегмента, но все сегменты кода, описанные так в одном и том же модуле, объединяются в один сегмент с именем NAME_TEXT.

.stack размер

Директива.STACK описывает сегмент стека и эквивалентна директиве

STACK segment para public ’stack’

Необязательный параметр указывает размер стека. По умолчанию он равен 1 Кб.

.data

Описывает обычный сегмент данных и соответствует директиве

_DATA segment word public ’DATA’.data?

Описывает сегмент неинициализированных данных:

_BSS segment word public ’BSS’

Этот сегмент обычно не включается в программу, а располагается за концом памяти, так что все описанные в нем переменные на момент загрузки программы имеют неопределенные значения.

.const

Описывает сегмент неизменяемых данных:

CONST segment word public ’CONST’

В некоторых операционных системах этот сегмент будет загружен так, что попытка записи в него может привести к ошибке.

.fardata имя_сегмента

Сегмент дальних данных:

имя_сегмента segment para private ’FAR_DATA’

Доступ к данным, описанным в этом сегменте, потребует загрузки сегментного регистра. Если не указан операнд, в качестве имени сегмента используется FAR_DATA.

.fardata? имя_сегмента

Сегмент дальних неинициализированных данных:

имя_сегмента segment para private ’FAR_BSS’

Как и в случае с FARDATA, доступ к данным из этого сегмента потребует загрузки сегментного регистра. Если имя сегмента не указано, используется FAR_BSS.

Во всех моделях памяти сегменты, представленные директивами.DATA,.DATA?,.CONST,.FARDATA и.FARDATA?, а также сегмент, описанный директивой.STACK, если не был указан модификатор FARSTACK, и сегмент.CODE в модели TINY автоматически объединяются в группу с именем FLAT — для модели памяти FLAT или DGROUP — для всех остальных моделей. При этом сегментный регистр DS (и SS, если не было FARSTACK, и CS в модели TINY) настраивается на всю эту группу, как если бы была выполнена команда ASSUME.


Двухмерные массивы

С представлением одномерных массивов в программе на ассемблере и организацией их обработки все достаточно просто. А как быть если программа должна обрабатывать двухмерный массив? Все проблемы возникают по-прежнему из-за того, что специальных средств для описания такого типа данных в ассемблере нет. Двухмерный массив нужно моделировать. На описании самих данных это почти никак не отражается — память под массив выделяется с помощью директив резервирования и инициализации памяти.

Непосредственно моделирование обработки массива производится в сегменте кода, где программист, описывая алгоритм обработки ассемблеру, определяет, что некоторую область памяти необходимо трактовать как двухмерный массив.
При этом вы вольны в выборе того, как понимать расположение элементов двухмерного массива в памяти: по строкам или по столбцам.

Если последовательность однотипных элементов в памяти трактуется как двухмерный массив, расположенный по строкам, то адрес элемента (i, j) вычисляется по формуле

(база + количество_элементов_в_строке * размер_элемента * i+j)

Посмотрите на представление массива в памяти и убедитесь, что по этому смещению действительно находится нужный элемент массива.


Организация циклов

Циклы

Несмотря на то что набор команд Intel включает команды организации циклов, они годятся только для одного типа циклов — FOR-циклов, которые выполняются фиксированное число раз. В общем виде любой цикл записывается в ассемблере как условный переход.

WHILE-цикл: (команды инициализации цикла)метка: IF (не выполняется условие окончания цикла) THEN (команды тела цикла) jmp метка REPEAT/UNTIL-цикл: (команды инициализации цикла)метка: (команды тела цикла) IF (не выполняется условие окончания цикла) THEN (переход на метку)(такие циклы выполняется быстрее на ассемблере, и всегда следует стремиться переносить проверку условия окончания цикла в конец)LOOP/ENDLOOP-цикл: (команды инициализации цикла)метка: (команды тела цикла) IF (выполняется условие окончания цикла) THEN jmp метка2 (команды тела цикла) jmp меткаметка2:

Директивы IF и IFE

Синтаксис этих директив следующий:

IF(E) логическое_выражениефрагмент_программы_1 ELSEфрагмент_программы_2ENDIF

Обработка этих директив макроассемблером заключается в вычислении логического_выражения и включении в объектный модуль фрагмент_программы_1 или фрагмент_программы_2 в зависимости от того, в какой директиве IF или IFE это выражение встретилось:

  • если в директиве IF логическое выражение истинно, то в объектный модуль помещается фрагмент_программы_1.
    Если логическое выражение ложно, то при наличии директивы ELSE в объектный код помещается фрагмент_программы_2. Если же директивы ELSE нет, то вся часть программы между директивами IF и ENDIF игнорируется и в объектный модуль ничего не включается. Кстати сказать, понятие истинности и ложности значения логического_выражения весьма условно. Ложным оно будет считаться, если его значение равно нулю, а истинным — при любом значении, отличном от нуля.
  • директива IFE аналогично директиве IF анализирует значение логического_выражения. Но теперь для включения фрагмент_программы_1 в объектный модуль требуется, чтобы логическое_выражение имело значение “ложь”.

Директивы IFDEF и IFNDEF

Синтаксис этих директив следующий:

IF(N)DEF символическое_имяфрагмент_программы_1 ELSEфрагмент_программы_2ENDIF

Данные директивы позволяют управлять трансляцией фрагментов программы в зависимости от того, определено или нет в программе некоторое символическое_имя. Директива IFDEF проверяет, описано или нет в программе символическое_имя, и если это так, то в объектный модуль помещается фрагмент_программы_1. В противном случае, при наличии директивы ELSE, в объектный код помещается фрагмент_программы_2.
Если же директивы ELSE нет (и символическое_имя в программе не описано), то вся часть программы между директивами IF и ENDIF игнорируется и в объектный модуль не включается.

Действие IFNDEF обратно IFDEF. Если символического_имени в программе нет, то транслируется фрагмент_программы_1. Если оно присутствует, то при наличии ELSE транслируется фрагмент_программы_2. Если ELSE отсутствует, а символическое_имя в программе определено, то часть программы, заключенная между IFNDEF и ENDIF, игнорируется.

В качестве примера рассмотрим ситуацию, когда в объектный модуль программы должен быть включен один из трех фрагментов кода. Какой из трех фрагментов будет включен в объектный модуль, зависит от значения некоторого идентификатора switch:

  • если switch = 0, то сгенерировать фрагмент для вычисления выражения
    y = x*2**n;
  • если switch = 1, то сгенерировать фрагмент для вычисления выражения
    y = x/2**n;
  • если switch не определен, то ничего не генерировать.

Директивы IFB и IFNB

Синтаксис этих директив следующий:

IF(N)B аргументфрагмент_программы_1 ELSEфрагмент_программы_2ENDIF

Данные директивы используются для проверки фактических параметров, передаваемых в макрос. При вызове макрокоманды они анализируют значение аргумента, и в зависимости от того, равно оно пробелу или нет, транслируется либо фрагмент_программы_1, либо фрагмент_программы_1. Какой именно фрагмент будет выбран, зависит от кода директивы:



Поделиться:


Последнее изменение этой страницы: 2017-02-06; просмотров: 748; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.33.107 (0.19 с.)