ТОП 10:

Классификация алгоритмов шифрования



  • Симметричные (с секретным, единым ключом, одноключевые, single-key).
    • Потоковые (шифрование потока данных):
      • с одноразовым или бесконечным ключом (infinite-key cipher);
      • с конечным ключом (система Вернама - Vernam);
      • на основе генератора псевдослучайных чисел (ПСЧ).
    • Блочные (шифрование данных поблочно):
      • Шифры перестановки (permutation, P-блоки);
      • Шифры замены (подстановки, substitution, S-блоки):
      • моноалфавитные (код Цезаря);
      • полиалфавитные (шифр Видженера, цилиндр Джефферсона, диск Уэтстоуна, Enigma);
    • Cоставные:
      • Lucipher (фирма IBM, США);
      • DES (Data Encryption Standard, США);
      • FEAL-1 (Fast Enciphering Algoritm, Япония);
      • IDEA/IPES (International Data Encryption Algorithm/
      • Improved Proposed Encryption Standard, фирма Ascom-Tech AG, Швейцария);
      • B-Crypt (фирма British Telecom, Великобритания);
      • ГОСТ 28147-89 (СССР); * Skipjack (США).
  • Асимметричные (с открытым ключом, public-key):
    • Диффи-Хеллман DH (Diffie, Hellman);
    • Райвест-Шамир-Адлeман RSA (Rivest, Shamir, Adleman);
    • Эль-Гамаль ElGamal.

Электронная цифровая подпись (ЭЦП) используется для подтверждения целостности и авторства данных. Как и в случае асимметричного шифрования, в данном методе применяются двухключевые алгоритмы с таким же простым вычислением открытого ключа из секретного и практической невозможностью обратного вычисления. Однако назначение ключей ЭЦП совершенно иное. Секретный ключ применяется для вычисления ЭЦП, открытый ключ необходим для ее проверки. При соблюдении правил безопасного хранения секретного ключа никто, кроме его владельца, не в состоянии вычислить верную ЭЦП какого-либо электронного документа.

 

Хэширование - это метод криптозащиты, представляющий собой контрольное преобразование информации: из данных неограниченного размера путем выполнения криптографических преобразований вычисляется хэш-значение фиксированной длины, однозначно соответствующее исходным данным. Хэширование может выполняться как с использованием некоторого секретного ключа, так и без него. Данный метод применяется в схемах электронной подписи («подписывается» обычно хэш-значение данных, а не все данные целиком), а также в схемах аутентификации пользователей (при проверке, действительно ли пользователь является тем, за кого себя выдает).

Потоковые шифры

В потоковых шифрах, т. е. при шифровании потока данных, каждый бит исходной информации шифруется независимо от других с помощью гаммирования.

Гаммирование - наложение на открытые данные гаммы шифра (случайной или псевдослучайной последовательности единиц и нулей) по определенному правилу. Обычно используется "исключающее ИЛИ", называемое также сложением по модулю 2 и реализуемое в ассемблерных программах командой XOR. Для расшифровывания та же гамма накладывается на зашифрованные данные.

Бесконечный ключ – это означает, что гамма не повторяется.

Понятно, что обмен ключами размером с шифруемую информацию не всегда уместен. Поэтому чаще используют гамму, получаемую с помощью генератора псевдослучайных чисел (ПСЧ). В этом случае ключ - порождающее число (начальное значение, вектор инициализации, initializing value, IV) для запуска генератора ПСЧ. Каждый генератор ПСЧ имеет период, после которого генерируемая последовательность повторяется. Очевидно, что период псевдослучайной гаммы должен превышать длину шифруемой информации.

Генератор ПСЧ считается корректным, если наблюдение фрагментов его выхода не позволяет восстановить пропущенные части или всю последовательность при известном алгоритме, но неизвестном начальном значении.

При использовании генератора ПСЧ возможны несколько вариантов:

1. Побитовое шифрование потока данных. Цифровой ключ используется в качестве начального значения генератора ПСЧ, а выходной поток битов суммируется по модулю 2 с исходной информацией. В таких системах отсутствует свойство распространения ошибок.

2. Побитовое шифрование потока данных с обратной связью (ОС) по шифртексту. Такая система аналогична предыдущей, за исключением того, что шифртекст возвращается в качестве параметра в генератор ПСЧ. Характерно свойство распространения ошибок. Область распространения ошибки зависит от структуры генератора ПСЧ.

3. Побитовое шифрование потока данных с ОС по исходному тексту. Базой генератора ПСЧ является исходная информация. Характерно свойство неограниченного распространения ошибки.

4. Побитовое шифрование потока данных с ОС по шифртексту и по исходному тексту.

Блочные шифры

При блочном шифровании информация разбивается на блоки фиксированной длины и шифруется поблочно. Блочные шифры бывают двух основных видов:

  • шифры перестановки (transposition, permutation, P-блоки);
  • шифры замены (подстановки, substitution, S-блоки).

Шифры перестановок переставляют элементы открытых данных (биты, буквы, символы) в некотором новом порядке. Различают шифры горизонтальной, вертикальной, двойной перестановки, решетки, лабиринты, лозунговые и др.

Шифры замены заменяют элементы открытых данных на другие элементы по определенному правилу. Paзличают шифры простой, сложной, парной замены, буквенно-слоговое шифрование и шифры колонной замены. Шифры замены делятся на две группы:

  • моноалфавитные (код Цезаря) ;
  • полиалфавитные (шифр Видженера, цилиндр Джефферсона, диск Уэтстоуна, Enigma).

В моноалфавитных шифрах замены буква исходного текста заменяется на другую, заранее определенную букву. Например в коде Цезаря буква заменяется на букву, отстоящую от нее в латинском алфавите на некоторое число позиций. Очевидно, что такой шифр взламывается совсем просто. Нужно подсчитать, как часто встречаются буквы в зашифрованном тексте, и сопоставить результат с известной для каждого языка частотой встречаемости букв.

В полиалфавитных подстановках для замены некоторого символа исходного сообщения в каждом случае его появления последовательно используются различные символы из некоторого набора. Понятно, что этот набор не бесконечен, через какое-то количество символов его нужно использовать снова. В этом слабость чисто полиалфавитных шифров.

В современных криптографических системах, как правило, используют оба способа шифрования (замены и перестановки). Такой шифратор называют составным (product cipher). Oн более стойкий, чем шифратор, использующий только замены или перестановки.

Блочное шифрование можно осуществлять двояко:

1. Без обратной связи (ОС). Несколько битов (блок) исходного текста шифруются одновременно, и каждый бит исходного текста влияет на каждый бит шифртекста. Однако взаимного влияния блоков нет, то есть два одинаковых блока исходного текста будут представлены одинаковым шифртекстом. Поэтому подобные алгоритмы можно использовать только для шифрования случайной последовательности битов (например, ключей). Примерами являются DES в режиме ECB и ГОСТ 28147-89 в режиме простой замены.

2. С обратной связью. Обычно ОС организуется так: предыдущий шифрованный блок складывается по модулю 2 с текущим блоком. В качестве первого блока в цепи ОС используется инициализирующее значение. Ошибка в одном бите влияет на два блока - ошибочный и следующий за ним. Пример - DES в режиме CBC.

Генератор ПСЧ может применяться и при блочном шифровании:

1. Поблочное шифрование потока данных. Шифрование последовательных блоков (подстановки и перестановки) зависит от генератора ПСЧ, управляемого ключом.

2. Поблочное шифрование потока данных с ОС. Генератор ПСЧ управляется шифрованным или исходным текстом или обоими вместе.







Последнее изменение этой страницы: 2017-02-06; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.232.38.214 (0.004 с.)