Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Современные архитектуры файловых системСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Разработчики новых операционных систем стремятся обеспечить пользователя возможностью работать сразу с несколькими файловыми системами. В современном понимании файловая система состоит из многих составляющих, в число которых входят и файловые системы в традиционном понимании. Современная файловая система имеет многоуровневую структуру (рис.5.11), на верхнем уровне которой располагается так называемый переключатель файловых систем. Он обеспечивает интерфейс между запросами приложения и конкретной файловой системой, к которой обращается это приложение. Переключатель файловых систем преобразует запросы в формат, воспринимаемый следующим уровнем – уровнем файловых систем. Каждый компонент уровня файловых систем выполнен в виде драйвера соответствующей файловой системы и поддерживает определенную организацию файловой системы. Переключатель является единственным модулем, который может обращаться к драйверу файловой системы. Приложение не может обращаться к нему напрямую. Драйвер файловой системы может быть написан в виде реентерабельного кода, что позволяет сразу нескольким приложениям выполнять операции с файлами. Каждый драйвер файловой системы в процессе собственной инициализации регистрируется у переключателя, передавая ему таблицу точек входа, которые будут использоваться при последующих обращениях к файловой системе. Для выполнения своих функций драйверы файловых систем обращаются к подсистеме ввода-вывода, образующей следующий слой файловой системы новой архитектуры. Подсистема ввода вывода – это составная часть файловой системы, которая отвечает за загрузку, инициализацию и управление всеми модулями низших уровней файловой системы. Обычно эти модули представляют собой драйверы портов, которые непосредственно занимаются работой с аппаратными средствами. Кроме этого подсистема ввода-вывода обеспечивает некоторый сервис драйверам файловой системы, что позволяет им осуществлять запросы к конкретным устройствам. Подсистема ввода-вывода должна постоянно присутствовать в памяти и организовывать совместную работу иерархии драйверов устройств. В эту иерархию могут входить драйверы устройств определенного типа (драйверы жестких дисков или накопителей на лентах), драйверы, поддерживаемые поставщиками (такие драйверы перехватывают запросы к блочным устройствам и могут частично изменить поведение существующего драйвера этого устройства, например, зашифровать данные), драйверы портов, которые управляют конкретными адаптерами.
Рис.5.11. Архитектура современной файловой системы
Большое число уровней архитектуры файловой системы обеспечивает авторам драйверов устройств большую гибкость – драйвер может получить управление на любом этапе выполнения запроса – от вызова приложением функции, которая занимается работой с файлами, до того момента, когда работающий на самом низком уровне драйвер устройства начинает просматривать регистры контроллера. Многоуровневый механизм работы файловой системы реализован посредством цепочек вызова. В ходе инициализации драйвер устройства может добавить себя к цепочке вызова некоторого устройства, определив при этом уровень последующего обращения. Подсистема ввода-вывода помещает адрес целевой функции в цепочку вызова устройства, используя заданный уровень для того, чтобы должным образом упорядочить цепочку. По мере выполнения запроса, подсистема ввода-вывода последовательно вызывает все функции, ранее помещенные в цепочку вызова. Внесенная в цепочку вызова процедура драйвера может решить передать запрос дальше – в измененном или в неизмененном виде – на следующий уровень, или, если это возможно, процедура может удовлетворить запрос, не передавая его дальше по цепочке. Система ввода-вывода Общие положения В состав любой операционной системы входят программные модули, обеспечивающие управление устройствами ввода-вывода ЭВМ. Эти программные модули называют драйверами устройств, а совокупность драйверов ввода-вывода образует систему ввода-вывода, входящую в состав операционной системы. Драйвер устройства (Device driver) – программа, обеспечивающая взаимодействие операционной системы с физическим устройством. Система ввода-вывода (Input-Output System) – часть операционной системы, обеспечивающая управление внешними устройствами, подключенными к ЭВМ. Основной задачей системы ввода-вывода является обеспечение непрерывной организации (планирования, управления) и двусторонней передачи данных между основной памятью и внешними устройствами с целью достижения максимального перекрытия во времени работы этой аппаратуры и процессора. Состав систем ввода-вывода и, следовательно, перечень драйверов устройств в различных операционных системах не совпадают, что объясняется имеющимися отличиями в аппаратуре ввода-вывода, а также множеством методов, используемых для управления этой аппаратурой. Вместе с тем в большинстве операционных систем существует некоторое ядро системы ввода-вывода, получившее название базовой системы ввода-вывода. Базовая система ввода-вывода (BIOS – Basic Input Output System) – часть программного обеспечения ЭВМ, поддерживающая управление адаптерами внешних устройств и представляющая стандартный интерфейс для обеспечения переносимости операционных систем между ЭВМ с одинаковым процессором. Базовая система ввода-вывода, как правило, разрабатывается изготовителем ЭВМ, хранится в постоянном запоминающем устройстве и рассматривается как часть ЭВМ. При построении систем ввода-вывода аппаратура ввода-вывода рассматривается как совокупность аппаратурных процессоров, которые способны работать параллельно и независимо друг от друга, а также относительно центрального процессора. На таких процессорах развиваются так называемые внешние процессы. Внешние процессы, используя аппаратуру ввода-вывода, могут взаимодействовать как между собой, так и с внутренними процессами, которые развиваются на центральном процессоре. Важным фактом является то, что скорости развития внешних и внутренних процессов существенно различаются, причем эти различия могут достигать нескольких порядков. Система управления вводом-выводом представляет собой один или несколько системных процессов (т.е. процессов, принадлежащих операционной системе), обеспечивающих информационное и управляющее взаимодействие внутренних и внешних процессов. Через эту систему происходит инициализация, управление развитием и уничтожение внешних процессов. С точки зрения внутренних (программных) процессов-пользователей система управления вводом-выводом представляет собой программный интерфейс с необходимыми для этих процессов внешними устройствами. В составе этого интерфейса пользователь имеет возможность выражать запросы на выполнение действий в отношении внешних устройств. При этом различают три типа действий: операции чтения и записи данных, операции управления устройством, операции по проверке состояния устройств. При построении систем управления вводом-выводом руководствуются стремлением сделать большинство ее компонентов «невидимыми» для пользователей, что достигается созданием развитых драйверов внешних устройств с понятным интерфейсом и доступными из любой системы программирования. Для сглаживания эффекта несоответствия скоростей между внутренними и внешними процессами в системах управления вводом-выводом применяют три основных метода: синхронизация по прерываниям ввода-вывода; буферизация ввода-вывода; блокирование данных. Для синхронизации параллельной работы могут применяться различные методы, среди которых наиболее совершенными являются средства, основанные на использовании системы прерывания. Канал ввода-вывода через систему прерываний прерывает работу центрального процессора всякий раз при завершении операции ввода-вывода или при возникновении ошибки. Такие сигналы прерывания являются по своему смыслу синхронизирующими, т.к. они используются для оповещения определенного внутреннего процесса о событии, которое произошло при работе канала ввода-вывода или внешнего устройства. Одной из главных функций ОС является управление всеми устройствами ввода-вывода компьютера. ОС должна передавать устройствам команды, перехватывать прерывания и обрабатывать ошибки; она также должна обеспечивать интерфейс между устройствами и остальной частью системы. В целях развития интерфейс должен быть одинаковым для всех типов устройств (независимость от устройств).
|
||||
Последнее изменение этой страницы: 2017-02-05; просмотров: 559; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.40.234 (0.01 с.) |