Вычитание двоичных чисел со знаком 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вычитание двоичных чисел со знаком



Здесь все несколько сложнее. Последний пример (листинг 4) показал то, что микропроцессору незачем иметь два устройства — сложения и вычитания. Достаточно наличия только одного — устройства сложения. Но для вычитания способом сложения чисел со знаком в дополнительном коде необходимо представлять оба операнда — и уменьшаемое, и вычитаемое. Результат тоже нужно рассматривать как значение в дополнительном коде. Но здесь возникают сложности. Прежде всего они связаны с тем, что старший бит операнда рассматривается как знаковый. Рассмотрим пример вычитания 45 – (–127).

Пример 7.

Вычитание чисел со знаком 1

45 = 0010 1101 - -127 = 1000 0001 = -44 = 1010 1100

Судя по знаковому разряду, результат получился отрицательный, что, в свою очередь, говорит о том, что число нужно рассматривать как дополнение, равное –44. Правильный результат должен быть равен 172. Здесь мы, как и в случае знакового сложения, встретились с переполнением мантиссы, когда значащий разряд числа изменил знаковый разряд операнда. Отследить такую ситуацию можно по содержимому флага переполнения of. Его установка в 1 говорит о том, что результат вышел за диапазон представления знаковых чисел (то есть изменился старший бит) для операнда данного размера, и программист должен предусмотреть действия по корректировке результата.

Другой пример разности рассматривается в примере 7, но выполним мы ее способом сложения.

Пример 8.

Вычитание чисел со знаком 2

-45 — 45 = -45 + (-45)= -90. -45 = 1101 0011 + -45 = 1101 0011 = -90 = 1010 0110

Здесь все нормально, флаг переполнения of сброшен в 0, а 1 в знаковом разряде говорит о том, что значение результата — число в дополнительном коде.

Вычитание и сложение операндов большой размерности

Если вы заметили, команды сложения и вычитания работают с операндами фиксированной размерности: 8, 16, 32 бит. А что делать, если нужно сложить числа большей размерности, например 48 бит, используя 16-разрядные операнды? К примеру, сложим два 48-разрядных числа:

Рис. 5. Сложение операндов большой размерности

На рис. 5 по шагам показана технология сложения длинных чисел. Видно, что процесс сложения многобайтных чисел происходит так же, как и при сложении двух чисел “в столбик”, — с осуществлением, при необходимости, переноса 1 в старший разряд. Если нам удастся запрограммировать этот процесс, то мы значительно расширим диапазон двоичных чисел, над которыми мы сможем выполнять операции сложения и вычитания.

Принцип вычитания чисел с диапазоном представления, превышающим стандартные разрядные сетки операндов, тот же, что и при сложении, то есть используется флаг переноса cf. Нужно только представлять себе процесс вычитания в столбик и правильно комбинировать команды микропроцессора с командой sbb.

В завершение обсуждения команд сложения и вычитания отметим, что кроме флагов cf и of в регистре eflags есть еще несколько флагов, которые можно использовать с двоичными арифметическими командами. Речь идет о следующих флагах:

  • zf — флаг нуля, который устанавливается в 1, если результат операции равен 0, и в 1, если результат не равен 0;
  • sf — флаг знака, значение которого после арифметических операций (и не только) совпадает со значением старшего бита результата, то есть с битом 7, 15 или 31. Таким образом, этот флаг можно использовать для операций над числами со знаком.

Умножение чисел без знака

Для умножения чисел без знака предназначена команда

mul сомножитель_1

Как видите, в команде указан всего лишь один операнд-сомножитель. Второй операнд — сомножитель_2 задан неявно. Его местоположение фиксировано и зависит от размера сомножителей. Так как в общем случае результат умножения больше, чем любой из его сомножителей, то его размер и местоположение должны быть тоже определены однозначно. Варианты размеров сомножителей и размещения второго операнда и результата приведены в табл. 2.

Таблица 2. Расположение операндов и результата при умножении

сомножитель_1 сомножитель_2 Результат
Байт al 16 бит в ax: al — младшая часть результата; ah — старшая часть результата
Слово ax 32 бит в паре dx:ax: ax — младшая часть результата; dx — старшая часть результата
Двойное слово eax 64 бит в паре edx:eax: eax — младшая часть результата; edx — старшая часть результата

Из таблицы видно, что произведение состоит из двух частей и в зависимости от размера операндов размещается в двух местах — на месте сомножитель_2 (младшая часть) и в дополнительном регистре ah, dx, edx (старшая часть). Как же динамически (то есть во время выполнения программы) узнать, что результат достаточно мал и уместился в одном регистре или что он превысил размерность регистра и старшая часть оказалась в другом регистре? Для этого привлекаются уже известные нам по предыдущему обсуждению флаги переноса cf и переполнения of:

  • если старшая часть результата нулевая, то после операции произведения флаги cf = 0 и of = 0;
  • если же эти флаги ненулевые, то это означает, что результат вышел за пределы младшей части произведения и состоит из двух частей, что и нужно учитывать при дальнейшей работе.

Рассмотрим следующий пример программы.

Листинг 5. Умножение<1>;prg_8_5.asm<2> masm<3> model small <4> stack 256<5>.data;сегмент данных<6> rez label word<7> rez_l db 45<8> rez_h db 0<9>.code;сегмент кода <10> main:;точка входа в программу<11>...<12> xor ax,ax<13> mov al,25<14> mul rez_l<15> jnc m1;если переполнение, то на м1 <16> mov rez_h,ah;старшую часть результата в rez_h<17> m1:<18> mov rez_l,al<19> exit:<20> mov ax,4c00h;стандартный выход<21> int 21h <22> end main;конец программы

В этой программе в строке 14 производится умножение значения в rez_l на число в регистре al. Согласно информации в табл. 2, результат умножения будет располагаться в регистре al (младшая часть) и регистре ah (старшая часть). Для выяснения размера результата в строке 15 командой условного перехода jnc анализируется состояние флага cf и если оно не равно 1, то результат остался в рамках регистра al. Если же cf = 1, то выполняется команда в строке 16, которая формирует в поле rez_h старшее слово результата. Команда в строке 18 формирует младшую часть результата. Теперь обратите внимание на сегмент данных, а именно, на строку 6. В этой строке содержится директива label. Мы еще не раз будем сталкиваться с этой директивой. В данном случае она назначает еще одно символическое имя rez адресу, на который уже указывает другой идентификатор rez_l. Отличие заключается в типах этих идентификаторов — имя rez имеет тип слова, который ему назначается директивой label (имя типа указано в качестве операнда label). Введя эту директиву в программе, мы подготовились к тому, что, возможно, результат операции умножения будет занимать слово в памяти. Обратите внимание, что мы не нарушили принципа: младший байт по младшему адресу. Далее, используя имя rez, можно обращаться к значению в этой области как к слову.

Умножение чисел со знаком

Для умножения чисел со знаком предназначена команда

imul операнд_1[,операнд_2,операнд_3]

Эта команда выполняется так же, как и команда mul. Отличительной особенностью команды imul является только формирование знака.
Если результат мал и умещается в одном регистре (то есть если cf = of = 0), то содержимое другого регистра (старшей части) является расширением знака — все его биты равны старшему биту (знаковому разряду) младшей части результата.
В противном случае (если cf = of = 1) знаком результата является знаковый бит старшей части результата, а знаковый бит младшей части является значащим битом двоичного кода результата.
Если вы посмотрите описание команды imul, то увидите, что она допускает более широкие возможности по заданию местоположения операндов. Это сделано для удобства использования.

Деление чисел без знака

Для деления чисел без знака предназначена команда

Div делитель

Делитель может находиться в памяти или в регистре и иметь размер 8, 16 или 32 бит. Местонахождение делимого фиксировано и так же, как в команде умножения, зависит от размера операндов. Результатом команды деления являются значения частного и остатка.

Варианты местоположения и размеров операндов операции деления показаны в табл. 3.

Таблица 3. Расположение операндов и результата при делении

Делимое Делитель Частное Остаток
16 бит в регистре ax Байт регистр или ячейка памяти Байт в регистре al Байт в регистре ah
32 бит dx — старшая часть ax — младшая часть Слово 16 бит регистр или ячейка памяти Слово 16 бит в регистре ax Слово 16 бит в регистре dx
64 бит edx — старшая часть eax — младшая часть Двойное слово 32 бит регистр или ячейка памяти Двойное слово 32 бит в регистре eax Двойное слово 32 бит в регистре edx

После выполнения команды деления содержимое флагов неопределенно, но возможно возникновение прерывания с номером 0, называемого “деление на ноль”. Этот вид прерывания относится к так называемым исключениям. Эта разновидность прерываний возникает внутри микропроцессора из-за некоторых аномалий во время вычислительного процесса. Прерывание 0, “деление на ноль”, при выполнении команды div может возникнуть по одной из следующих причин:

  • делитель равен нулю;
  • частное не входит в отведенную под него разрядную сетку, что может случиться в следующих случаях:
    • при делении делимого величиной в слово на делитель величиной в байт, причем значение делимого в более чем 256 раз больше значения делителя;
    • при делении делимого величиной в двойное слово на делитель величиной в слово, причем значение делимого в более чем 65 536 раз больше значения делителя;
    • при делении делимого величиной в учетверенное слово на делитель величиной в двойное слово, причем значение делимого в более чем 4 294 967 296 раз больше значения делителя.

К примеру, выполним деление значения в области del на значение в области delt (листинг 6).

Листинг 6. Деление чисел<1>;prg_8.6.asm<2> masm<3> model small<4> stack 256 <5>.data<6> del_b label byte<7> deldw 29876<8> delt db 45<9>.code;сегмент кода<10> main:;точка входа в программу <11>...<12> xor ax,ax<13>;последующие две команды можно заменить одной mov ax,del<14> mov ah,del_b;старший байт делимого в ah<15> mov al,del_b+1;младший байт делимого в al<16> div delt;в al — частное, в ah — остаток <17>...<18> endmain;конец программы

Деление чисел со знаком

Для деления чисел со знаком предназначена команда

Idiv делитель

Для этой команды справедливы все рассмотренные положения, касающиеся команд и чисел со знаком. Отметим лишь особенности возникновения исключения 0, “деление на ноль”, в случае чисел со знаком. Оно возникает при выполнении команды idiv по одной из следующих причин:

  • делитель равен нулю;
  • частное не входит в отведенную для него разрядную сетку.

Последнее в свою очередь может произойти:

  • при делении делимого величиной в слово со знаком на делитель величиной в байт со знаком, причем значение делимого в более чем 128 раз больше значения делителя (таким образом, частное не должно находиться вне диапазона от –128 до +127);
  • при делении делимого величиной в двойное слово со знаком на делитель величиной в слово со знаком, причем значение делимого в более чем 32 768 раз больше значения делителя (таким образом, частное не должно находиться вне диапазона от –32 768 до +32 768);
  • при делении делимого величиной в учетверенное слово со знаком на делитель величиной в двойное слово со знаком, причем значение делимого в более чем 2 147 483 648 раз больше значения делителя (таким образом, частное не должно находиться вне диапазона от –2 147 483 648 до +2 147 483 647).

7. Команды преобразования типов

Команды преобразования типов

Что делать, если размеры операндов, участвующих в арифметических операциях, разные? Например, предположим, что в операции сложения один операнд является словом, а другой занимает двойное слово. Выше сказано, что в операции сложения должны участвовать операнды одного формата. Если числа без знака, то выход найти просто. В этом случае можно на базе исходного операнда сформировать новый (формата двойного слова), старшие разряды которого просто заполнить нулями. Сложнее ситуация для чисел со знаком: как динамически, в ходе выполнения программы, учесть знак операнда? Для решения подобных проблем в системе команд микропроцессора есть так называемые команды преобразования типа. Эти команды расширяют байты в слова, слова — в двойные слова и двойные слова — в учетверенные слова (64-разрядные значения). Команды преобразования типа особенно полезны при преобразовании целых со знаком, так как они автоматически заполняют старшие биты вновь формируемого операнда значениями знакового бита старого объекта. Эта операция приводит к целым значениям того же знака и той же величины, что и исходная, но уже в более длинном формате. Подобное преобразование называется операцией распространения знака.

Существуют два вида команд преобразования типа:

  • Команды без операндов — эти команды работают с фиксированными регистрами:
    • cbw (Convert Byte to Word) — команда преобразования байта (в регистре al) в слово (в регистре ax) путем распространения значения старшего бита al на все биты регистра ah;
    • cwd (Convert Word to Double) — команда преобразования слова (в регистре ax) в двойное слово (в регистрах dx:ax) путем распространения значения старшего бита ax на все биты регистра dx;
    • cwde (Convert Word to Double) — команда преобразования слова (в регистре ax) в двойное слово (в регистре eax) путем распространения значения старшего бита ax на все биты старшей половины регистра eax;
    • cdq (Convert Double Word to Quarter Word) — команда преобразования двойного слова (в регистре eax) в учетверенное слово (в регистрах edx:eax) путем распространения значения старшего бита eax на все биты регистра edx.
  • Команды movsx и movzx, относящиеся к командам обработки строк (см. урок 11). Эти команды обладают полезным свойством в контексте нашей проблемы:
    • movsx операнд_1,операнд_2 — переслать с распространением знака. Расширяет 8 или 16-разрядное значение операнд_2, которое может быть регистром или операндом в памяти, до 16 или 32-разрядного значения в одном из регистров, используя значение знакового бита для заполнения старших позиций операнд_1. Данную команду удобно использовать для подготовки операндов со знаками к выполнению арифметических действий;
    • movzx операнд_1,операнд_2 — переслать с расширением нулем. Расширяет 8 или 16-разрядное значение операнд_2 до 16 или 32-разрядного с очисткой (заполнением) нулями старших позиций операнд_2. Данную команду удобно использовать для подготовки операндов без знака к выполнению арифметических действий.

К примеру, вычислим значение y = (a + b)/c, где a, b, c — байтовые знаковые переменные (листинг 7).

  Листинг 7. Вычисление простого выражения <1>;prg_8_9.asm <2> masm <3> model small <4> stack 256 <5>.data   <6> a db? <7> b db? <8> c db? <9> y dw 0 <10>.code <11> main:;точка входа в программу   <12>... <13> xor ax,ax <14> mov al,a <15> cbw <16> movsx bx,b <17> add ax,bx   <18> idiv c;в al — частное, в ah — остаток <19> exit: <20> mov ax,4c00h;стандартный выход <21> int 21h <22> end main;конец программы

В этой программе делимое для команды idiv (строка 17) готовится заранее. Так как делитель имеет размер байта, то делимое должно быть словом. С учетом этого сложение осуществляется параллельно с преобразованием размера результата в слово (строки 13–16). Для примера расширение операндов со знаком производится двумя разными командами — cbw и movsx.

Другие полезные команды

xadd назначение,источник — обмен местами и сложение.

Команда позволяет выполнить последовательно два действия:

  • обменять значения назначение и источник;
  • поместить на место операнда назначение сумму:
    назначение = назначение + источник.

neg операнд — отрицание с дополнением до двух.

Команда выполняет инвертирование значения операнд. Физически команда выполняет одно действие:
операнд = 0 – операнд, то есть вычитает операнд из нуля.
Команду neg операнд можно применять:

  • для смены знака;
  • для выполнения вычитания из константы.

Дело в том, что команды sub и sbb не позволяют вычесть что-либо из константы, так как константа не может служить операндом-приемником в этих операциях. Поэтому данную операцию можно выполнить с помощью двух команд:

neg ax;смена знака (ax) ... add ax,340;фактически вычитание: (ax)=340-(ax)  

 



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 814; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.143.239 (0.03 с.)