Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Лекция №8 разработка нефтяных и газовых месторожденийСодержание книги
Поиск на нашем сайте
Понятие о рациональной разработке газового и газоконденсатного месторождения.
Под разработкой газового и газоконденсатного месторождения понимается управление процессами движения в пласте газа и конденсата к скважинам с целью добычи газа и конденсата. Такое управление достигается посредством определенной системы разработки залежи. Система разработки газовой и газоконденсатной залежи означает выделение эксплуатационных объектов, размещение необходимого числа добывающих, наблюдательных и пьезометрических скважин, порядок ввода их и поддержание определенных, допустимых технологических режимов работы эксплуатационных скважин. До того, как природный газ попадет к потребителю, он подвергается различным термодинамическим воздействиям с целью достижения соответствующих параметров кондиции как топлива и как химического сырья. Для этих воздействий на газ применяются системы обустройства газового промысла. Система обустройств включает в себя подземное и поверхностное оборудование для сбора газа и конденсата, отделения конденсата, очистки газа от механических и других вредных примесей (С02, N, H2S), осушки газа, компримирования и подачи газа потребителю в магистральный газопровод. Система обустройства и поддержания оптимального режима работы оборудования относится к предмету эксплуатации газового и газоконденсатного месторождений. На открытие и разведку газовых и газоконденсатных месторождений затрачиваются большие средства, запасы природных газов представляют всенародное достояние. Поэтому системы разработки и обустройства месторождения должны обеспечивать максимальный народнохозяйственный эффект. Под рациональными системой разработки месторождения природного газа и системой обустройства промысла понимаются такие системы, при которых обеспечиваются: выполнение заданного плановыми органами уровня добычи газа, ценных компонентов и конденсата; получение наибольшей народно-хозяйственной эффективности (с оптимальными технико-экономическими показателями); обеспечение максимальных коэффициентов газо- и конденсатоотдачи; соблюдение условий охраны недр и окружающей среды. Заданная величина добычи газа и газового конденсата определяется решением общей проблемы развития газодобывающей отрасли с учетом геолого-технических возможностей газовых залежей и достижений научно-технического прогресса в области проектирования, разработки и эксплуатации месторождений, в области транспорта и использования природного газа.
Газовая залежь вместе со всеми ее скважинами и окружающей ее водонапорной системой представляет единую газогидродинамическую систему. Если к одному и тому же водоносному бассейну приурочен ряд месторождений, то в результате разработки происходит их взаимодействие. Снижение давления в одном месторождении вызывает снижение пластового давления в других месторождениях, даже если они находятся друг от друга на значительных расстояниях. То же самое происходит между скважинами и системой обустройства месторождения, между установкой комплексной подготовки газа (УКПГ) и давлением в магистральном газопроводе. Поэтому при проектировании разработки газовых и газоконденсатных месторождений система пласт- скважина- газосборная сеть - УКПГ- магистральный газопровод- потребитель рассматривается как ЕДИНОЕ ЦЕЛОЕ. При выборе системы разработки и обустройства газовых месторождений решающее значение имеет отраслевая экономика. В каждом проекте разработки месторождения рассматриваются несколько вариантов расположения скважин и технологических режимов их работы для обеспечения заданного уровня добычи газа и конденсата. И только на основе сопоставления технико-экономических показателей всех вариантов выбирается наиболее экономичный, рациональный. К числу важнейших экономических показателей, определяемых при проектировании и анализе разработки месторождения относятся себестоимость добычи газа, капитальные вложения, энергоемкость, фондоотдача, приведенные затраты, объем реализуемой продукции, металловложения, производительность труда, прибыль, рентабельность, срок окупаемости капитальных вложений. В качестве критерия сравнения различных вариантов разработки месторождения применяется показатель приведенных затрат. Общую экономическую эффективность капитальных вложений можно рассчитать как отношение прибыли к вызвавшим ее капитальным вложениям.
ЛЕКЦИЯ № 9 Подготовка газа к дальнему трансполрту Низкотемпературная сепарация
Одним из основных методов подготовки природного газа является низкотемпературная сепарация (НТС), сущность которой состоит в получении низких температур при расширении газа. Применяется на месторождениях с высоким пластовым давление (16-20 и более МПа), при содержании конденсата в газе до 100 г/м3. Допускается содержание сероводорода. НТС с впрыском в поток газа гликоля обеспечивает получение точки росы газа по воде от - 25°С до - 60°С. В простейшей схеме НТС в качестве редукционного органа используют насадки постоянного сечения - штуцеры. В процессе дросселирования газа в штуцере (снижение давления газа при постоянной энтальпии) температура газа снижается на 2-4°С на 1 МПа снижения давления. В расчетах принимают среднее значение коэффициента Джоуля-Томсона, равное 3°С на 1 МПа. Охлаждают продукцию скважин для того, чтобы сконденсировались тяжелые углеводороды (конденсат), пары воды. После перехода конденсата и воды в жидкое состояние газожидкостную смесь сепарируют, отделяя жидкость от газа. При сепарации от газа отделяются также механические (твердые) примеси и вводимые в поток ингибиторы коррозии и гидратообразования. Таким образом, назначение НТС - извлечение конденсата, осушка и очистка газа от механических примесей. НТС обеспечивает подачу кондиционного газа в магистральный газопровод и добычу нестабильного конденсата.
Рис. 27. Технологическая схема НТС с использованием эффекта Джоуля-Томсона для отдельной скважины 1 - добывающая скважина; 2 - манифольд, 3 - шлейф; 4 - каплеотбойник; 5 - теплообменник; 6 - штуцер; 7 - низкотемпературный сепаратор; 8 - конденсатосборник.
Газ, выходящий из скважины, движется по шлейфу в каплеотбойник жидкости и твердой фазы 4, отделяется в нем от капель жидкости и твердых частиц, поступает в теплообменник 5, предварительно охлаждается в нем встречным потоком холодного газа от t, до t 2, проходит редуцирование в редукционном аппарате 6, охлаждается до заданной температуры t c при давлении максимальной конденсации Р с, отделяется от жидкости и твердой фазы в нем, частично или полностью проходит теплообменник 5, нагревается за счет теплоты потока газа, идущего из скважины, от t 3 до t 4 и далее поступает на промысловый газосборный пункт (ПГСП), Там он окончательно доводится до товарных кондиций, его измеряют и распределяют по потребителям. Отделившийся нестабильный конденсат направляют на ПГСП, где его стабилизируют и замеряют количество. НТС - процесс однократной конденсации и разделения газа и жидкости, несовершенный технологический процесс. Даже при весьма низких температурах сепарации (до - 40°С) он не обеспечивает полного извлечения жидких углеводородов, но позволяет использовать пластовое давление для получения холода.
Абсорбционная осушка газа
Применяется для извлечения из газа водяных паров и тяжелых углеводородов. Для осушки газа в качестве абсорбента используются гликоли, а для извлечения тяжелых углеводородов - углеводородные жидкости. Абсорбенты, применяемые для осушки газа, должны обладать высокой взаиморастворимостью с водой, простотой и стабильностью при регенерации, низкой вязкостью при температуре контанта, низкой коррозионной способностью, не образовывать пен или эмульсий. На современных промыслах чаще применяют диэтиленгликоль (ДЭГ), триэтиленгликоль (ТЭГ).
ДЭГ имеет формулу СН 2 ОН - СН 2 - О - СН 2 - СН 2 ОН, представляет собой эфир этиленгликоля с молекулярной массой 106,12 и плотностью =1117 кг/м3. Его температура кипения при атмосферном давлении равна 244,5 °С. Он смешивается с водой в любых соотношениях. Преимущество ДЭГа перед ТЭГом - меньшая склонность к ценообразованию при содержании в газе конденсата. Кроме того, ДЭГ обеспечивает лучшее разделение системы вода - углеводороды. Однако ТЭГ обеспечивает высокую степень осушки, что приводит к большому снижению "точки росы". ТЭГ имеет более высокую температуру разложения. Следовательно, ТЭГ можно нагревать до более высокой температуры и регенерацию (восстановление) его проводить без вакуума. Чем выше концентрация подаваемого гликоля, тем глубже степень осушки. Концентрация гликоля зависит от эффективности его регенерации. При атмосферном давлении ДЭГ можно регенерировать до 96,7%, а ТЭГ-до 98,1%. Гликоли в чистом виде не вызывают коррозии углеродистых сталей. Процесс абсорбции осуществляется в вертикальном цилиндрическом сосуде-абсорбере. Газ и абсорбент контактируют на тарелках, смонтированных внутри аппарата, перемещаясь противотоком: газ поднимается снизу вверх, а абсорбент стекает сверху вниз. Абсорбент по мере своего движения насыщается поглощаемыми им компонентами или влагой и через низ колонны подается на регенерацию. С верха колонны уходит осушенный газ. Эффективность абсорбции зависит от температуры и давления, числа тарелок в абсорбере, количества и качества абсорбента. Увеличение числа тарелок (а их устанавливают в абсорбере 14-18 шт.) оказывает такое же влияние, как и увеличение количества циркулирующего абсорбента. Верхний и нижний температурные пределы процесса определяются соответственно потерями гликоля от испарения и возрастанием его вязкости и равны 35-10рС.
Рис. 28. Технологическая схема абсорбционной осушки газа. Технологическая схема установки осушки газа с помощью ДЭГа состоит из контактора-абсорбера 1, десорбера (выпарной колонны) 5 и вспомогательного оборудования. Влажный газ поступает в нижнюю скрубберную секцию абсорбера 1, где отделяется от капельной жидкости и жидких углеводородов, после чего поступает под нижнюю тарелку абсорбера. Затем газ, двигаясь снизу вверх навстречу абсорбенту, осушается и проходит в верхнюю скрубберную секцию, где отделяется от уносимых с потоком капель абсорбента. Осушенный газ подается в магистральный газопровод.
Насыщенный раствор абсорбента из абсорбера 1 сначала проходит теплообменник 2, выветриватель 3, фильтр 4. Затем раствор поступает в десорбер 5. В нижней части десорбера 5 происходит нагрев абсорбента паровым нагревателем до установленной температуры (100-130°С). Водяной пар из десорбера поступает в сборник конденсата 6. Отсюда часть воды направляется обратно в верхнюю часть колонны для понижения температуры и концентрации поднимающихся паров абсорбента, что сокращает его расход. Регенерированный абсорбент охлаждается насыщенным раствором в теплообменнике 2, после чего поступает в абсорбер 1. Абсорбер диаметром 1,2 м. имеет высоту 15 метров, массу 25 тонн, пропускную способность 3-5 млн.м3/сут., давление в абсорбере до 8 МПа. Опыт эксплуатации абсорберов показал, что в нем должно циркулировать не менее 25 литров на 1 кг абсорбируемой воды, количество концентрированного раствора абсорбента G (кг/ч), необходимого для осушки газа, определяется по формуле (19.1) где Q -количество осушаемого газа, тыс.м3/ч; , -влагосодержание соответственно поступающего и осушенного газов, кг/тыс.м3; , - концентрация абсорбента в свежем и насыщенном растворах, % вес. Определяются также размеры абсорбера и десорбера, число тарелок, размеры теплообменников и т.д. Потери раствора ДЭГа достигают 18-40 г/100м3 газа.
Адсорбционная осушка газа
Адсорбционная осушка газа применяется для получения низкой "точки росы" (-20-30°С), которая необходима при транспорте газа в северных районах страны. Одним из важных преимуществ адсорбции является то, что не требуется предварительной осушки газа, так как твердые адсорбенты, наряду с жидкими углеводородами, хорошо адсорбируют и влагу. В качестве адсорбента используют твердые пористые вещества, обладающие большой удельной поверхностью. К ним относятся активированные угли (S уд = 600-1700 м2/г); силикагели - продукты обезвоживания геля кремниевой кислоты (S уд-320-770M /г); цеолиты - минералы, являющиеся водными алюмосиликатами натрия и кальция, а также искусственные цеолиты. Сущность адсорбции состоит в концентрировании вещества на поверхности или в объеме микропор твердого тела. Эффективные радиусы микропор составляют (5-10) 10'14 мкм. Максимальная активность, достигаемая к моменту равновесия при данных температуре и концентрации поглощаемого вещества в газовой фазе, называется равновесной статической активностью. Активность при поглощении до появления поглощаемого компонента за слоем поглотителя называется динамической активностью. Динамическая активность адсорбента характеризует вес улавливаемой жидкости в процентах от веса адсорбента. Обычно она равна 4-7%. Промышленные адсорбенты должны обладать достаточно высокой активностью, обратимостью адсорбации и простотой регенерации, малым сопротивлением потоку газа и высокой механической прочностью. Десорбция основана на том, что при повышении температуры увеличивается энергия адсорбированных молекул и они могут освобождаться от адсорбента. Наиболее благоприятны для этого температуры 200-300°С.
Рис, 29. Технологическая схема адсорбционной осушки газа: 1 - сепаратор; 2 - адсорберы; 3 - подогреватель; 4 - компрессор; 5 - теплообменник; 6 - задвижка. Необходимое количество адсорбента G (кг) определяется по формуле (19.2) где Q - количество осушаемого газа, м3/ч; - количество влаги, поглощаемой адсорбентом, кг/м3; - динамическая активность адсорбента; - время работы адсорбента, ч. В момент насыщения адсорбента влагой в одном из адсорберов в другом происходит десорбция и охлаждение. Процесс протекает последовательно по мере насыщения влагой адсорбента в колонне. Размеры адсорберов в 2-3 раза меньше абсорберов. Внутри аппарата размещено от 4 до 8 полок, на которые насыпают необходимое количество адсорбента. Работает адсорбер без замены селикагеля до 2 лет. Рабочая температура в адсорбере 10-14 °С, средняя скорость движения газа через адсорбер 0,15-0,5 м/с, давление газа 7-8 МПа. Продолжительность циклов насыщения, регенерации и охлаждения адсорбента определяется временем, необходимым для его регенерации. Обычно цикл насыщения длится 10-20 ч, а цикл регенерации 4-8 ч.
ЛЕКЦИЯ 10
|
|||||||||
Последнее изменение этой страницы: 2017-02-05; просмотров: 320; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.35.228 (0.01 с.) |