Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Курс лекций эксплуатация и разработка шельфовых месторохдений

Поиск

КУРС ЛЕКЦИЙ ЭКСПЛУАТАЦИЯ И РАЗРАБОТКА ШЕЛЬФОВЫХ МЕСТОРОХДЕНИЙ

 

ЛЕКЦИЯ N 1

 

Мировая добыча нефти, газа и угля

Учет добытой в мире нефти начался в 1850 году. Сначала это были сотни и тысячи тонн, к концу 19 века добыча измерялась уже десятками миллионов тонн. Наиболее интенсивный рост годовой добычи нефти фиксируется с 1950 года, что и видно из ниже приведенных данных:

1950г.- 549 млн. т.

1960г. - 1105 млн. т.

1970г. - 2358 млн. т.

1980г. - 3092млн. т.

1990г. - 3175 млн. т.

2000г.- 3620 млн.т.

2005г.- 3943 млн.т.

2006г.- 3963 млн.т.

2007г.- 3950 млн.т.

2008г.- 3992 млн.т.

2009г.- 3891 млн.т.

2010г. -3979 млн.т.

2011г.- 4019 млн.т.

2012г.- 4119 млн.т.

2013г.- 4220 млн.т.

2014г.- 4232 млн.т.

2015г.- 4362 млн.т.

2016г.- 4420 млн.т.

 

Годовая добыча нефти в мире

К началу 2017 г. всего в мире добыто свыше 190.2 млрд. т. нефти. При средней плотности ее 800 кг/м3 суммарный объем извлеченной из недр нефти превысил 238 км3. Эта нефть заняла бы условный куб с вели­чиной ребра, равной всего 6.20 км.

 

Следует заметить, что мировую добычу нефти определяют 7 регио­нов нашей планеты:

■ Северная Америка (США, Мексика, Канада);

■ Южная Америка (Венесуэла, Аргентина);

■ Ближний и Средний Восток (Ирак, Иран, Саудовская Аравия);

■ Африка (Ливия, Нигерия, Алжир);

■ Азия и Дальний Восток (Индонезия, Австралия, Индия);

■ Западная Европа (Великобритания, Германия, Норвегия);

■ Страны бывшего социалистического лагеря (Россия, Китай, Вос­точная Европа).

До распада СССР на страны бывшего социалистического лагеря приходилось не более 20% мировой добычи нефти. Разведанность недр Земли далеко не равномерна и существуют обширные регионы, практи­чески не затронутые глубокой разведкой. Наиболее изучены недра США, на территории которых уже пробурено более 1.3 миллиона скважин. В России пробурено около 450 тыс. скважин.

Мировая добыча газа за год характеризуется следующими данными:

1950г. - 191 млрд. м3

1960г. – 453 млрд. м3

1970г. – 1001 млрд. м3

1980г. – 1434 млрд. м3

1985г. - 1674 млрд. м3

1990г. – 1980 млрд. м3

1995г. - 2150 млрд. м3

2000г.- 2412 млрд.м3.

2005г.- 2650 млрд.м3.

2009г.- 2987 млрд.м3.

2011г.- 3276 млрд.м3.

2012Г.- 3354 млрд.м3.

2013г. – 3432 млрд.м3.

 

 

Суммарная добыча газа на планете к началу 2014 года достигла 121млрд. м3. При средней плотности добытого газа 0,8 кг/м3 масса его составила 96. 82млрд.т., что соответствует 54.7 % от мировой добычи нефти.

По литературным данным доказанные запасы нефти в капиталисти­ческих и развивающихся странах на 01.01.2010. (без СНГ и Восточной Европы) составляют:

Северная Америка - 10667 млн. т.

Латинская Америка - 15938 млн. т.

Западная Европа - 7837 млн. т.

Ближний и Средний Восток - 103400 млн. т.

Африка - 17284 млн. т.

Юго-Восточная Азия,

Дальний Восток, Океания - 6953 млн. т.

Всего 162000 млн. т.

Доказанные запасы природного газа по странам мира на 01.01.2010 г. составляют:

Северная Америка - 9600 млрд м3

Латинская Америка - 8060 млрд м3

Западная Европа - 6292 млрд м3

СНГ + Восточная Европа - 58559 млрд м3

Африка - 14760 млрд м3

Ближний Восток - 76180 млрд м3

Юго-Восточная Азия +

Океания - 16240 млрд м3.

Всего - 187500 млрд м3.

Наибольшая доля запасов природного газа сосредоточена в странах ОПЕК (около 40%) и СНГ и Восточной Европы (около 39%). В пересчете на нефтяной эквивалент запасы природного газа вполне сопоставимы с ресурсами нефти. Цена на природный газ колеблется в Западно-Европейских странах в пределах 300-350 долл./тыс.м3.. Из приведенных данных следует, что дока­занные запасы газа по странам мира на 01.01.2010 г. превышают 187 млрд.м3.

ЛЕКЦИЯ 2

Вопросы происхождения

Едва ли в геологии найдется другая проблема, которая вызывала бы столь продолжительные дискуссии, как проблема происхождения нефти и других природных горючих ископаемых. Образовались ли они из остатков животных и растений или в результате синтеза неорганических соединений? Первая точка зрения наиболее широко представлена в научных кругах, вторая — все еще числится в аутсайдерах, но за более чем столетнюю историю накопила много фактов, которые необъяснимы органической концепцией. Дмитрий Менделеев был первым, кто предложил схему образования нефти из глубинных флюидов, проникающих в земную кору из мантии. В дальнейшем Николай Кудрявцев, Николай Бескровный и другие геологи развили эти представления и показали, что глубинным разломам действительно сопутствует поток газообразных углеводородов, а приуроченность крупнейших месторождений нефти и газа к рифтам не случайна. В зонах крупных разломов вполне может идти абиогенный синтез горючих ископаемых, этому способствуют активность природных катализаторов, высокая температура глубинного флюида и присутствие в его составе свободного водорода, для перемещения которого в породах нет преград. Вопрос происхождения горючих углеводородов важен не только для ученых, но в итоге для всех нас. Если исходное органическое вещество — это остатки организмов, умерших сотни миллионов лет назад, то количество нефти и газа на Земле ограниченно, а их запасы невосполнимы. Если же органический синтез происходит в недрах из неорганики, то он может идти там и сейчас, постоянно образуя или обновляя залежи углеводородов. А значит, мы будем открывать все новые и новые месторождения в самых разных местах земной коры. Конечно, обе концепции — органическая и неорганическая — еще далеки от окончательного становления, они постоянно изменяются и дополняются, так что поставить точку в дискуссии о происхождении нефти по прежнему нельзя.

Прогнозы и перспективы

Оценки количества ископаемого топлива различаются порой на порядки. Их величина зависит от того, что именно учитывают: прогнозные запасы сырья, разведанные, доказанные, геологические или извлекаемые. Включают ли в расчет объем месторождения второй и третьей очереди, то есть те, что будет выгодно разрабатывать в будущем (как, например, глубоко залегающие битуминозные пески Канады). Важно также, до какой глубины залежи считаются рентабельными. Лет 50 назад запасы углеводородов на континентальном шельфе считали таковыми — до глубины несколько десятков метров, теперь — первых километров. Специалисты, однако, предупреждают, что даже величина открытых и доказанных запасов может измениться по мере накопления данных почти на 20%, а прогнозные оценки еще более неточны. Как подсчитано British Petroleum, доказанные запасы нефти на конец 2005 года в мире составляли 163,8 млрд. т, газа — 179,8 трлн. м3. Это количество, безусловно, будет уточняться, так как шельфы морей и территории некоторых стран еще плохо изучены. Следует также учесть, что подобные оценки не включают в себя запасы глубоководных зон океана и Антарктиды. Этот континент совершенно не исследован в отношении полезных ископаемых, всякая разведывательная деятельность там запрещена международными соглашениями, и сейчас не представляется возможным сказать что-либо достоверное о его запасах.

К 1980 году геологи обнаружили порядка 600 осадочных бассейнов на Земле, перспективных в отношении нефти и газа. Из них 400 уже освоены, а около 200 — пока нет. Замечено, что основные мировые запасы сосредоточены всего в нескольких бассейнах, таких как Персидский и Мексиканский заливы, Западная Сибирь, на сотни же остальных приходится около 10% запасов. Так что среди двух сотен неизученных бассейнов ожидали найти максимум 10 супергигантских залежей, но, похоже, их не более 4—5.

Относительно суши, изученной в большей степени, крупные открытия и не предполагались. Эксперты прочили их там, где раньше еще не искали — на континентальном шельфе. Что, собственно, и произошло в конце 1980-х — начале 1990-х. В настоящее время на шельфе добывают более 37% нефти и 32% газа. Это вовсе не значит, что специалисты там все изучили — по большому счету, за морские поиски только принимаются. Перспективы недр шельфа как вместилища ископаемого топлива действительно высоки. Геологические запасы нефти (до глубины воды 305 м) составляют 280 млрд. тонн, газа — 140 трлн. м3. Впечатляют и открытия в конце прошлого века гигантских нефтяных и газовых месторождений у берегов Анголы, Нигерии, на Каспии, в арктических морях.

Но работы на шельфе, глубоко под водой, очень дороги, технически сложны и рискованны. В запасе есть другие варианты, например активнее исследовать горизонты глубокого залегания на суше. Большая часть посчитанных запасов нефти лежит до глубины 3 км, ниже месторождения находят редко, еще реже на глубинах 5—7 км (там чаще находят газ). В северо-западной части полуострова Флорида изученность месторождения такова, что из одной скважины с глубины 4,7 км получают 234,5 т нефти и 60 000 м3 газа в сутки. Из недавних открытий — обнаруженные в августе 2006 года промышленные запасы нефти на глубине 8,5 км в Мексиканском заливе (под 2-километровой толщей воды). В России глубинные поиски нефти пока происходят в рамках научного бурения. Так, сверхглубокая Тюменская скважина в Западной Сибири — 7,5 км — вскрыла перспективные пласты палеозойского возраста, хотя промышленных запасов нефти или газа там не оказалось.

Еще один источник нефти — остатки в пласте. В недрах нефть находится под давлением (например, при глубине 2 км ее давление в коллекторе достигает 20 МПа), поэтому при вскрытии скважины она начинает стремиться вверх (фонтанировать, как говорят нефтяники) и первое время извлекается без труда. Затем давление в пласте падает, нефть перестает подниматься кверху, и ее приходится вытеснять, закачивая в коллектор воду, или выкачивать мощными насосами. Чем ниже давление, тем более сложные и дорогостоящие технологии приходится использовать (гидроакустические, физико-химические и даже бактериальные), чтобы заставить породу «отдать» нефть. Добирать остатки очень дорого, а иногда технически невозможно. Полностью же выбрать всю нефть, особенно если она вязкая, из пород нельзя, в месторождении ее может оставаться еще много. Весьма редко, на отдельных месторождениях, разрабатываемых новейшими способами, доля извлеченной нефти достигает 35— 40%, обычно это — 18—25%.

«Глубинный» или «остаточный» способы не дешевле морского. И большой вопрос, как лучше распорядиться деньгами — вложить их в морской проект, где разведочная скважина обойдется в 15 миллионов долларов, или зарыть в землю. Для каждого региона решение принимается индивидуально. К примеру, на Аляске, где создана хорошая нефтедобывающая инфраструктура, бросать которую, конечно, неразумно, идут путем извлечения остатков, хотят выжать недра до последней капли.

 

ЛЕКЦИЯ № 3

ЛЕКЦИЯ 4

ЮРИДИЧЕСКОЕ ПОНЯТИЕ ШЕЛЬФА

 

Ше́льф (англ. shelf) — выровненная область подводной окраины материка, примыкающая к суше и характеризующаяся общим с ней геологическим строением.

Границами шельфа являются берег моря или океана и так называемая бровка (резкий перегиб поверхности морского дна — переход к материковому склону). Глубина над бровкой обычно составляет 100—200 метров (но в некоторых случаях может достигать 500—1500 м, например, в южной части Охотского моря или бровка Новозеландского шельфа).

Под шельфом ( анг. Shelf) понимается выровненная часть подводной окраины материков с незначительным уклоном, примыкающая к суше и характеризующаяся общим с ней геологическим строением. Глубины у внешней границы шельфа обычно составляют 100-200 м, но в отдельных случаях достигают 1500-2000 м (Южно-Курильская котловина Охотского моря). Ширина шельфа лежит в пределах от 1 до 1700 км (Северный Ледовитый океан), составляя в среднем 65-70 км, а общая площадь - около 32 млн. км2 или почти 11,3 % поверхности Мирового океана. Основная часть площади шельфа Мирового океана (примерно 70%) располагается на глубинах, не превышающих 180 м, а глубина моря в районе перехода шельфа в материковый склон колеблется от 200 до 600 м.

На рисунке 1 представлен профиль континентального шельфа. За береговой линией 2 следует континентальный шельф 3, за кромкой 4 которого начинается континентальный склон 5, спускающийся в глубь моря. За подножьем 6 склона находится область отложения осадочных пород, так называемый континентальный подъем 7, уклон которого меньше, чем у континентального склона. За континентальным подъемом начинается глубоководная равнинная часть 8 моря.

Рисунок 1 Профиль континентального шельфа.

 

 

Общая площадь шельфов составляет около 32 миллионов км². Наиболее обширен шельф у северной окраины Евразии, где его ширина достигает 1,5 тыс. километров, а также в Беринговом море, Гудзоновом заливе, Южно-Китайском море, у северного побережья Австралии.

Конвенция ООН по морскому праву от 1982 года предоставляет прибрежным государствам право контроля над континентальным морским шельфом (морское дно и недра подводных районов, находящиеся за пределами территориальных вод государства). Для реализации этого права стране необходимо подать заявку в специальный международный орган — Комиссию ООН по границам континентального шельфа.

В России на шельфе Баренцева моря работает компания Штокман Девелопмент АГ. На шельфе Балтийского моря около побережья Калининградской области добывается нефть, на шельфе Каспийского моря — нефть, газ и другие полезные ископаемые, у берегов Сахалина добывается газ.

В настоящее время рядом стран ведется борьба за арктический шельф. Наиболее активными участниками этой борьбы являются с одной стороны Канада и США, с другой Российская Федерация.

Эти страны организуют арктические экспедиции, для того чтобы доказать свои права на бо́льшую часть арктического шельфа, чем та которой они могут распоряжаться сегодня. На лето 2010 года запланирована очередная такая экспедиция, ранее успешно завершились две американо-канадских предпринятые с этой целью. В свою очередь, в 2001 году. Россия стала первой из пяти арктических стран, обратившейся с заявкой о расширении границ своего континентального шельфа свыше стандартного 322-х километрового лимита. ООН отвергла эту заявку, сославшись на недостаток доказательств. Россия заявила, что потратила в 2010 году около 1,5 миллиардов рублей на определение протяженности своего континентального шельфа в Арктике.

 

ЛЕКЦИЯ 5

ЛЕКЦИЯ 6

Лекция №7.

ЛЕКЦИЯ № 9

Подготовка газа к дальнему трансполрту

Низкотемпературная сепарация

 

Одним из основных методов подготовки природного газа является низкотемпературная сепарация (НТС), сущность которой состоит в полу­чении низких температур при расширении газа. Применяется на месторож­дениях с высоким пластовым давление (16-20 и более МПа), при содержа­нии конденсата в газе до 100 г/м3. Допускается содержание сероводорода. НТС с впрыском в поток газа гликоля обеспечивает получение точки росы газа по воде от - 25°С до - 60°С.

В простейшей схеме НТС в качестве редукционного органа использу­ют насадки постоянного сечения - штуцеры. В процессе дросселирования газа в штуцере (снижение давления газа при постоянной энтальпии) тем­пература газа снижается на 2-4°С на 1 МПа снижения давления. В расчетах принимают среднее значение коэффициента Джоуля-Томсона, равное 3°С на 1 МПа.

Охлаждают продукцию скважин для того, чтобы сконденсировались тяжелые углеводороды (конденсат), пары воды. После перехода конденсата и воды в жидкое состояние газожидкостную смесь сепарируют, отделяя жидкость от газа. При сепарации от газа отделяются также механические (твердые) примеси и вводимые в поток ингибиторы коррозии и гидратообразования.

Таким образом, назначение НТС - извлечение конденсата, осушка и очистка газа от механических примесей. НТС обеспечивает подачу конди­ционного газа в магистральный газопровод и добычу нестабильного кон­денсата.

 

Рис. 27. Технологическая схема НТС с использованием

эффекта Джоуля-Томсона для отдельной скважины

1 - добывающая скважина; 2 - манифольд, 3 - шлейф; 4 - каплеотбойник; 5 - теплообменник; 6 - штуцер; 7 - низкотемпературный сепаратор; 8 - конденсатосборник.

 

Газ, выходящий из скважины, движется по шлейфу в каплеотбойник жидкости и твердой фазы 4, отделяется в нем от капель жидкости и твер­дых частиц, поступает в теплообменник 5, предварительно охлаждается в нем встречным потоком холодного газа от t, до t 2, проходит редуцирование в редукционном аппарате 6, охлаждается до заданной температуры t c при давлении максимальной конденсации Р с, отделяется от жидкости и твердой фазы в нем, частично или полностью проходит теплообменник 5, нагрева­ется за счет теплоты потока газа, идущего из скважины, от t 3 до t 4 и далее поступает на промысловый газосборный пункт (ПГСП), Там он окончательно доводится до товарных кондиций, его измеряют и распределяют по потребителям. Отделившийся нестабильный конденсат направляют на ПГСП, где его стабилизируют и замеряют количество.

НТС - процесс однократной конденсации и разделения газа и жидко­сти, несовершенный технологический процесс. Даже при весьма низких температурах сепарации (до - 40°С) он не обеспечивает полного извлече­ния жидких углеводородов, но позволяет использовать пластовое давление для получения холода.

 

 

Абсорбционная осушка газа

 

Применяется для извлечения из газа водяных паров и тяжелых углево­дородов. Для осушки газа в качестве абсорбента используются гликоли, а для извлечения тяжелых углеводородов - углеводородные жидкости. Аб­сорбенты, применяемые для осушки газа, должны обладать высокой взаи­морастворимостью с водой, простотой и стабильностью при регенерации, низкой вязкостью при температуре контанта, низкой коррозионной спо­собностью, не образовывать пен или эмульсий. На современных промыслах чаще применяют диэтиленгликоль (ДЭГ), триэтиленгликоль (ТЭГ).

ДЭГ имеет формулу СН 2 ОН - СН 2 - О - СН 2 - СН 2 ОН, представляет собой эфир этиленгликоля с молекулярной массой 106,12 и плотно­стью =1117 кг/м3. Его температура кипения при атмосферном давлении равна 244,5 °С. Он смешивается с водой в любых соотношениях.

Преимущество ДЭГа перед ТЭГом - меньшая склонность к ценообра­зованию при содержании в газе конденсата. Кроме того, ДЭГ обеспечивает лучшее разделение системы вода - углеводороды. Однако ТЭГ обеспечива­ет высокую степень осушки, что приводит к большому снижению "точки росы". ТЭГ имеет более высокую температуру разложения. Следовательно, ТЭГ можно нагревать до более высокой температуры и регенерацию (восстановление) его проводить без вакуума.

Чем выше концентрация подаваемого гликоля, тем глубже степень осушки. Концентрация гликоля зависит от эффективности его регенерации. При атмосферном давлении ДЭГ можно регенерировать до 96,7%, а ТЭГ-до 98,1%. Гликоли в чистом виде не вызывают коррозии углеродистых ста­лей.

Процесс абсорбции осуществляется в вертикальном цилиндрическом сосуде-абсорбере. Газ и абсорбент контактируют на тарелках, смонтиро­ванных внутри аппарата, перемещаясь противотоком: газ поднимается снизу вверх, а абсорбент стекает сверху вниз. Абсорбент по мере своего движения насыщается поглощаемыми им компонентами или влагой и через низ колонны подается на регенерацию. С верха колонны уходит осу­шенный газ. Эффективность абсорбции зависит от температуры и давле­ния, числа тарелок в абсорбере, количества и качества абсорбента. Увели­чение числа тарелок (а их устанавливают в абсорбере 14-18 шт.) оказывает такое же влияние, как и увеличение количества циркулирующего абсор­бента. Верхний и нижний температурные пределы процесса определяются соответственно потерями гликоля от испарения и возрастанием его вязко­сти и равны 35-10рС.

 

 

Рис. 28. Технологическая схема абсорбционной осушки газа.

Технологическая схема установки осушки газа с помощью ДЭГа со­стоит из контактора-абсорбера 1, десорбера (выпарной колонны) 5 и вспо­могательного оборудования. Влажный газ поступает в нижнюю скрубберную секцию абсорбера 1, где отделяется от капельной жидкости и жидких углеводородов, после чего поступает под нижнюю тарелку абсорбера. За­тем газ, двигаясь снизу вверх навстречу абсорбенту, осушается и проходит в верхнюю скрубберную секцию, где отделяется от уносимых с потоком капель абсорбента. Осушенный газ подается в магистральный газопровод.

Насыщенный раствор абсорбента из абсорбера 1 сначала проходит те­плообменник 2, выветриватель 3, фильтр 4. Затем раствор поступает в десорбер 5. В нижней части десорбера 5 происходит нагрев абсорбента паро­вым нагревателем до установленной температуры (100-130°С). Водяной пар из десорбера поступает в сборник конденсата 6. Отсюда часть воды направляется обратно в верхнюю часть колонны для понижения темпера­туры и концентрации поднимающихся паров абсорбента, что сокращает его расход. Регенерированный абсорбент охлаждается насыщенным рас­твором в теплообменнике 2, после чего поступает в абсорбер 1.

Абсорбер диаметром 1,2 м. имеет высоту 15 метров, массу 25 тонн, пропускную способность 3-5 млн.м3/сут., давление в абсорбере до 8 МПа. Опыт эксплуатации абсорберов показал, что в нем должно циркулировать не менее 25 литров на 1 кг абсорбируемой воды, количество концентри­рованного раствора абсорбента G (кг/ч), необходимого для осушки газа, определяется по формуле

(19.1)

где Q -количество осушаемого газа, тыс.м3/ч;

, -влагосодержание соответственно поступающего и осушенного газов, кг/тыс.м3;

, - концентрация абсорбента в свежем и насыщенном рас­творах, % вес.

Определяются также размеры абсорбера и десорбера, число тарелок, размеры теплообменников и т.д. Потери раствора ДЭГа достигают 18-40 г/100м3 газа.

 

Адсорбционная осушка газа

 

Адсорбционная осушка газа применяется для получения низкой "точки росы" (-20-30°С), которая необходима при транспорте газа в север­ных районах страны. Одним из важных преимуществ адсорбции является то, что не требуется предварительной осушки газа, так как твердые адсор­бенты, наряду с жидкими углеводородами, хорошо адсорбируют и влагу. В качестве адсорбента используют твердые пористые вещества, обладающие большой удельной поверхностью.

К ним относятся активированные угли (S уд = 600-1700 м2/г); силикагели - продукты обезвоживания геля кремниевой кислоты (S уд-320-770M /г); цеолиты - минералы, являющиеся водными алюмосиликатами натрия и кальция, а также искусственные цеолиты.

Сущность адсорбции состоит в концентрировании вещества на по­верхности или в объеме микропор твердого тела. Эффективные радиусы микропор составляют (5-10) 10'14 мкм. Максимальная активность, дости­гаемая к моменту равновесия при данных температуре и концентрации по­глощаемого вещества в газовой фазе, называется равновесной статической активностью. Активность при поглощении до появления поглощаемого компонента за слоем поглотителя называется динамической активностью.

Динамическая активность адсорбента характеризует вес улавливаемой жидкости в процентах от веса адсорбента. Обычно она равна 4-7%.

Промышленные адсорбенты должны обладать достаточно высокой ак­тивностью, обратимостью адсорбации и простотой регенерации, малым сопротивлением потоку газа и высокой механической прочностью.

Десорбция основана на том, что при повышении температуры увели­чивается энергия адсорбированных молекул и они могут освобождаться от адсорбента. Наиболее благоприятны для этого температуры 200-300°С.

 

 

Рис, 29. Технологическая схема адсорбционной осушки газа:

1 - сепаратор; 2 - адсорберы; 3 - подогреватель; 4 - компрессор;

5 - теплообменник; 6 - задвижка.

Необходимое количество адсорбента G (кг) определяется по формуле

(19.2)

где Q - количество осушаемого газа, м3/ч;

- количество влаги, поглощаемой адсорбентом, кг/м3;

- динамическая активность адсорбента;

- время работы адсорбента, ч.

В момент насыщения адсорбента влагой в одном из адсорберов в дру­гом происходит десорбция и охлаждение. Процесс протекает последова­тельно по мере насыщения влагой адсорбента в колонне. Размеры адсорбе­ров в 2-3 раза меньше абсорберов. Внутри аппарата размещено от 4 до 8 полок, на которые насыпают необходимое количество адсорбента. Работа­ет адсорбер без замены селикагеля до 2 лет. Рабочая температура в адсорбере 10-14 °С, средняя скорость движения газа через адсорбер 0,15-0,5 м/с, давление газа 7-8 МПа.

Продолжительность циклов насыщения, регенерации и охлаждения адсорбента определяется временем, необходимым для его регенерации. Обычно цикл насыщения длится 10-20 ч, а цикл регенерации 4-8 ч.

 

ЛЕКЦИЯ 10

В конце XIX века, когда нефтяной промысел только начинался, лишь немногие отваживались покидать берег и бурить скважины в море. А ведь прибрежные месторождения часто продолжаются под водой. Серьезные технологии, позволяющие разведку и добычу ископаемого топлива на океанском дне, появились после Второй мировой войны. Так, в 1960-е годы разработка нефти и газа на шельфе Северного моря стала одной из главных причин роста европейской экономики. Сегодня взоры специалистов обращены на ледовые моря Арктики, но как к ним подступиться, пока неясно.

К 1980 году геологи обнаружили порядка 600 осадочных бассейнов на Земле, перспективных в отношении нефти и газа. Из них 400 уже освоены, а около 200 — пока нет. Замечено, что основные мировые запасы сосредоточены всего в нескольких бассейнах, таких как Персидский и Мексиканский заливы, Западная Сибирь, на сотни же остальных приходится около 10% запасов. Так что среди двух сотен неизученных бассейнов ожидали найти максимум 10 супергигантских залежей, но, похоже, их не более 4—5.

Относительно суши, изученной в большей степени, крупные открытия и не предполагались. Эксперты прочили их там, где раньше еще не искали — на континентальном шельфе. Что, собственно, и произошло в конце 1980-х — начале 1990-х. В настоящее время на шельфе добывают более 34% нефти и 25% газа. Это вовсе не значит, что специалисты там все изучили — по большому счету, за морские поиски только принимаются. Перспективы недр шельфа как вместилища ископаемого топлива действительно высоки. Геологические запасы нефти (до глубины 305 м) составляют 280 млрд. тонн, газа — 140 трлн. м3. Впечатляют и открытия в конце прошлого века гигантских нефтяных и газовых месторождений у берегов Анголы, Нигерии, на Каспии, в арктических морях.

Но работы на шельфе, глубоко под водой, очень дороги, технически сложны и рискованны. В запасе есть другие варианты, например активнее исследовать горизонты глубокого залегания на суше. Большая часть посчитанных запасов нефти лежит до глубины 3 км, ниже месторождения находят редко, еще реже на глубинах 5—7 км (там чаще находят газ). В северо-западной части полуострова Флорида изученность месторождения такова, что из одной скважины с глубины 4,7 км получают 234,5 т нефти и 60 000 м3 газа в сутки. Из недавних открытий — обнаруженные в августе 2006 года промышленные запасы нефти на глубине 8,5 км в Мексиканском заливе (под 2-километровой толщей воды). В России глубинные поиски нефти пока происходят в рамках научного бурения. Так, сверхглубокая Тюменская скважина в Западной Сибири — 7,5 км — вскрыла перспективные пласты палеозойского возраста, хотя промышленных запасов нефти или газа там не оказалось.

Еще один источник нефти — остатки в пласте. В недрах нефть находится под давлением (например, при глубине 2 км ее давление в коллекторе достигает 20 МПа), поэтому при вскрытии скважины она начинает стремиться вверх (фонтанировать, как говорят нефтяники) и первое время извлекается без труда. Затем давление в пласте падает, нефть перестает подниматься кверху, и ее приходится вытеснять, закачивая в коллектор воду, или выкачивать мощными насосами. Чем ниже давление, тем более сложные и дорогостоящие технологии приходится использовать (гидроакустические, физико-химические и даже бактериальные), чтобы заставить породу «отдать» нефть. Добирать остатки очень дорого, а иногда технически невозможно. Полностью же выбрать всю нефть, особенно если она вязкая, из пород нельзя, в месторождении ее может оставаться еще много. Весьма редко, на отдельных месторождениях, разрабатываемых новейшими способами, доля извлеченной нефти достигает 35— 40%, обычно это — 18—25%.

«Глубинный» или «остаточный» способы не дешевле морского. И большой вопрос, как лучше распорядиться деньгами — вложить их в морской проект, где разведочная скважина обойдется в 15 миллионов долларов, или зарыть в землю. Для каждого региона решение принимается индивидуально. К примеру, на Аляске, где создана хорошая нефтедобывающая инфраструктура, бросать которую, конечно, неразумно, идут путем извлечения остатков, хотят выжать недра до последней капли.

Первая в России

В северных морях обычно используют стационарные платформы на гравитационном основании, крепко стоящие на дне благодаря своей огромной массе. Основание, то есть подводная часть платформы, похоже на гигантский перевернутый стол с четырьмя ножками. «Ножки» делают внутри полыми, чтобы хранить там добытое сырье, технологическое оборудование. Пустоты облегчают конструкцию, и ее можно буксировать по морю из доков к месту назначения, а там затапливать. Верхнюю, стальную, часть платформы, несущую на себе добывающее оборудование, собирают отдельно и устанавливают сверху на основание уже в море. Идею, ставшую стандартом в морском нефтегазовом промысле, внедрили в 1970-х годах в Норвегии, а самая большая платформа этого типа «Тролл-А» — высотой 472 м и весом 656 000 тонн (вместе с основанием) — работает с 1996 года в Северном море. Для эксплуатации газового месторождения Лунское в Охотском море компанией «Сахалин Энерджи» решено было построить платформу, подобную норвежским, — вообще первую газодобывающую платформу в России. Необычность сооружения не только в циклопических размерах, но и в конструкции, которая рассчитана на тяжелые ледовые условия и высокую сейсмичность региона (у берегов Сахалина бывают землетрясения магнитудой до 8 баллов, а море замерзает). Железобетонное основание платформы «Лун-А» высотой 69,5 метра и весом 103 000 тонны построили в порту Восточный в бухте Врангеля. Летом 2005 года основание отбуксировали на расстояние 1 500 км от места создания и затопили на глубине 48 метров — прямо над месторождением. Благодаря большой массе оно не требует специального крепления ко дну и способно выдержать сильные штормы и напор льдов. Верхние строения (палубу) «Лун-А» конструировала компания Samsung на судоверфи острова Кодже в Южной Корее.

Км от Сахалина на глубину 48 м. В июле 2006 года на него установили палубу. «Лун-А» будет неподвижно стоять на дне, удерживаемая собственной тяжестью. Такая конструкция позволит вести добычу сырья круглый год, не опасаясь напора льдов и штормов

Сердце платформы, ради которого ее, собственно, и строят, представляет собой буровую установку. Ее высота — 45 метров. Современные технологии позволяют бурить целый куст скважин, не передвигая саму платформу с места на место, а только модуль буровой. По рельсам буровая установка скользит от скважины к скважине, которые могут находиться на расстоянии трех метров друг от друга. Всего здесь пробурят 27 скважин. Они проникнут в недра и охватят месторождение с разных сторон, как корни гигантского растения. Шестиуровневая палуба вмещает в себя необходимое технологическое оборудование, жилые и рабочие помещения, вертолетную площадку. В мае 2006 года палубу массой 22 000 тонн на погрузочной раме скатили на баржу, специально построенную для этого случая в Китае. При погрузке, чтобы баржа с палубой не затонули от резкого смещения центра тяжести, равновесие поддерживали накачкой воды по системе труб внутри баржи. Путь к месту стоянки платформы — почти 3 000 км — занял около двух недель. Баржа остановилась между торчащими из воды железобетонными опорами, и на них опустили стальные строения платформы. При этом требовалась большая точность, потому что стыковка двух частей происходила по четырем точкам: там, где смонтированы сейсмоизоляторы — устройства, которые гасят колебания конструкции, вызванные подземными толчками. Это большие стальные полусферы, которые свободно «ходят» в своих гнездах, не давая верхним строениям платформы сильно раскачиваться. Производственный цикл «Лун-А» разработан с учетом стандарта «нулевого сброса»: с платформы в море ничего не должно попадать — ни химические реагенты, ни добытое сырье, ни бытовые отходы.

На дне морском

надо в менее суровых районах. Таким тренировочным полигоном для отработки технологий, которые будут применять, В мире нет пока работающих технологий для добычи сырья в регионах, подобных Баренцеву морю. Тренироваться возможно, уже в ближайшем будущем для добычи нефти и газа в замерзающих морях, становится Норвежское море. Одно из очевидных решений — установить оборудование под водой, прямо на дне, чтобы снизить воздействие высоких волн, морозов, льдов. За ее воплощение взялась норвежская компания Norsk Hydro, в распоряжение которой отдали гигантское газовое месторождение Ормен Ланге с запасами 400 млрд. м3. Ормен Ланге открыли в 1997 году, оно расположено в Норвежском море в 120 км от берега, на глубине 2 км и накрыто километровой толщей воды. Суть проекта состоит в том, чтобы установить на дно буровое оборудование и перекачивать добытый газ напрямую по подводному трубопроводу на берег, на завод сжиженного природного газа (СПГ). Затем жидкий газ отправить по другому подводному трубопроводу потребителям в Англию. Строительство инфраструктуры начали в апреле 2004 года, а в октябре 2007-го подводные буровые заработают. Это в общих чертах, а в частности же норвежцам предстояло решить несколько нетривиальных задач. В августе 2005 года в месте бурения установили две донные платформы (кессоны), рассчитанные на 16 скважин. Из-за сильных течений их пришлось специально крепить ко дну. С платформ уже начали бурение 6 стволов, и если все пойдет хорошо, то на дно опустят еще две платформы. Все 4 установки будут соединены с двумя подводными трубопроводами для перекачки природного газа. Еще две ветки доставят на буровые антифриз (в данном случае моноэтиленгликоль) — жидкость, препятствующую образованию твердых частиц — гидратов, которые обязательно будут выпадать из метана при низкой температуре и забьют трубы. Несмотря на теплое течение, в Норвежском море сильно «дыхание Арктики» и температура воды близ места добычи держится –1,2°C большую часть года. Смесь газа и антифриза будут разделять уже на заводе СПГ. Много усилий потребовалось, чтобы проложить трубопроводы по неровному скалистому дну. Путь, конечно, оптимизировали, но некоторые места пришлось буквально ровнять. Несколько месяцев робот «Спайдер» ползал по дну, расчищал взрывами дорогу и убирал камни мощной струей воды. Нашпигованная датчиками машина передавала на берег данные, по которым строилась объемная картина происходящего под водой, и операторы управляли манипуляторами



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 238; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.17.181.112 (0.02 с.)