Значения рН для пресноводных рыб Европы (по Р.Дажо, 1975) 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Значения рН для пресноводных рыб Европы (по Р.Дажо, 1975)



рН Характер воздействия на пресноводных рыб
3,0 - 3,5 Гибельно для рыб; выживают некоторые растения и беспозвоночные
3,5 - 4,0 Гибельно для лососевых рыб; плотва, окунь, щука могут выжить после акклиматизации
4,0 - 4,5 Гибельно для многих рыб, размножается только щука
4,5 - 5,0 Опасно для икры лососевых рыб
5,0 - 9,0 Область, пригодная для жизни
9,0 - 9,5 Опасно для окуня и лососевых рыб в случае длительного воздействия
9,5 - 10,0 Вредно для развития некоторых видов, гибельно для лососевых при большой продолжительности воздействия
10,0 - 10,5 Переносится плотвой в течение очень короткого времени
10,5 - 11,5 Смертельно для всех рыб

 

Влияние количества растворенного кислорода на видовой состав и численность гидробионтов. Степень насыщенности воды кислородом обратно пропорциональна ее температуре. Концентрация растворенного О2 в поверхностных водах изменяется от 0 до 14 мг/л и подвержена значительным сезонным и суточным колебаниям, которые в основном зависят от соотношения интенсивности процессов его продуцирования и потребления. В случае высокой интенсивности фотосинтеза вода может быть значительно пересыщена О2 (20 мг/л и выше). В водной среде кислород является ограничивающим фактором. О2 составляет в атмосфере 21% (по объему) и около 35% от всех газов, растворенных в воде. Растворимость его в морской воде составляет 80% от растворимости в пресной воде. Распределение кислорода в водоеме зависит от температуры, перемещения слоев воды, а также от характера и количества живущих в нем организмов. Выносливость водных животных к низкому содержанию кислорода у разных видов неодинакова. Среди рыб установлено четыре группы по их отношению к количеству растворенного кислорода:

1) 7 - 11 мг / л - форель, гольян, подкаменщик;

2) 5 - 7 мг / л - хариус, пескарь, голавль, налим;

3) 4 мг / л - плотва, ерш;

4) 0,5 мг / л - карп, линь.

Некоторые виды организмов приспособились к сезонным ритмам в потреблении О2, связанными с условиями жизни. Так, у рачка Gammarus Lin­naeus выявили, что интенсивность дыхательных процессов возрастает вместе с температурой и изменяется в течение года. У животных, живущих в местах, бедных кислородом (прибрежный ил, донный ил), обнаружены дыхательные пигменты, служащие резервом кислорода. Эти виды способны выживать, переходя к замедленной жизни, к анаэробиозу или благодаря тому, что у них имеется d-гемоглобин, обладающий большим сродством к кислороду (дафнии, олигохеты, полихеты, некоторые пластинчатожаберные моллюски). Другие водные беспозвоночные поднимаются за воздухом на поверхность. Это имаго жуков-плавунцов и водолюбов, гладыши, водяные скорпионы и водяные клопы, прудовики и катушка (брюхоногие моллюски). Некоторые жуки окружают себя воздушным пузырьком, удерживаемым волоском, а насекомые могут использовать воздух из воздухоносных пазух водяных растений.

Зависимость живых организмов от концентрации минеральных солей в среде. В естественных водах концентрация минеральных солей весьма различна. В пресной воде максимальное содержание растворенных веществ равно 0,5 г/л. В морской воде среднее содержание растворенных солей 35 г/л. В солоноватых водах этот показатель очень изменчив. Соленость обычно выражается в промилле (‰) и является одной из основных характеристик водных масс, распределения морских организмов, элементов морских течений и т.д. Особую роль она играет в формировании биологической продуктивности морей и океанов, так как многие организмы очень восприимчивы к незначительным ее изменениям. Многие виды животных являются целиком морскими (многие виды рыб, беспозвоночных и млекопитающих).

В солоноватых водах обитают виды, способные переносить повышенную соленость. В эструариях, где соленость ниже 3 ‰, морская фауна беднее. В Балийском море, соленость которого составляет 4 ‰, встречаются балянусы, кольчецы, а также коловратки и гидроиды.

Водные организмы подразделяются на пресноводные и морские по степени солености воды, в которой они обитают. Сравнительно немногие растения и животные могут выдерживать большие колебания солености. Такие виды обычно обитают в эструариях рек или в соленых маршах и носят названия эвригалинных. К ним относятся многие обитатели литорали (соленость около 35 ‰), эструариев рек, солоноватоводных (5 - 35 ‰) и ультрасоленых (50 - 250 ‰), а также проходные рыбы, нерестящиеся в пресной воде (< 5 ‰). Наиболее удивительный пример - рачок Artemia salina, способный существовать при солености от 20 до 250 ‰ и даже переносить полное временное опреснение. Способность существовать в водах с различной соленостью обеспечивается механизмами осморегуляции, которую поддерживают относительно постоянные концентрации осмотически активных веществ в жидкостях внутренней среды.

По отношению к солености среды животные делятся на стеногалинных и эвригалинных. Стеногалинные животные - животные, не выдерживающие значительные изменения солености среды. Это подавляющее число обитателей морских и пресных водоемов. Эвригалинные животные способны жить при широком диапазоне колебаний солености. Например, улитка Hydrobia ulvae способна выживать при изменении концентрации NaCl от 50 до 1600 ммоль/мл. К ним относятся также медуза Aurelia aurita, съедобная мидия Mutilus edulis, краб Carcinus maenas, аппендикулярия Oikopleura dioica.

Устойчивость по отношению к изменению солености меняется с температурой. Например, гидроид Cordylophora caspia лучше переносит низкую соленость при невысокой температуре; десятиногие раки переходят в малосоленые воды, когда температура становится слишком высокой. Виды, обитающие в солоноватых водах, отличаются от морских форм размерами. Так, краб Carcinus maenas в Балтийском море имеет маленькие размеры, а в эструариях и лагунах - крупные. То же можно сказать и о съедобной мидии Mutilus edulis, имеющей в Балтийском море средний размер 4 см, в Белом море - 10 - 12 см, а в Японском - 14 - 16 см в соответствии с увеличением солености. Кроме того, от солености среды зависит и строение эвригалинных видов. Рачок артемия при солености 122 ‰ имеет размер 10 мм, при 20 ‰ достигает 24 - 32 мм. Одновременно изменяется форма тела, придатков и окраска.

Химические экорегуляторы

 

Живые организмы, принадлежащие к растительному или животному царству, влияют на свое окружение путем взаимно перекрещивающего действия различных молекул. Эти взаимодействия могут происходить между животными, растениями, между животными и растениями. Кроме того, неживая природа также воздействует на животных и растения. Изучением таких взаимодействий и химических веществ, служащих посредниками при этом, занимается химическая экология.

Успехи химической экологии во многом обязаны появлению новых физико-химических методов исследования, позволяющих установить структуру вещества в субмиллиграммовом количестве. Основы химической экологии изложены Флоркиным (1966), разработавшим терминологию и сформулировавшим основные идеи и направления новой науки.

Химические взаимодействия осуществляются при передаче закодированных сообщений при помощи специфических молекул, а также используются для защиты или нападения на всех уровнях эволюционного развития.

Сложность взаимоотношений между организмами выражается в характере действия данного организма на среду (межвидовое или внутривидовое) - являются ли они благоприятными или вредными для оказывающего их вида. Ниже приведена классификация различных типов химических воздействий организма на среду.

 

Классификация типов химических воздействий организма на среду (по М. Барбье, 1978)



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 200; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.185.194 (0.008 с.)