Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Биогеохимические круговороты веществ

Поиск

Биосфера — открытая система. Ее существование невозможно без поступления энергии извне. Основная доля приходится на энергию Солнца. В отличие от количества солнечной энергии, количество атомов вещества на Земле ограничено. Круговорот веществ обеспечивает неисчерпаемость отдельных атомов химических элементов. При отсутствии круговорота, например, за короткое время был бы исчерпан основной «строительный материал» живого — углерод.

Круговорот веществ многократное участие веществ в процессах, протекающих в атмосфере, гидросфере и литосфере, в том числе в тех слоях, которые входят в состав биосферы Земли. Круговорот веществ осуществляется при непрерывном поступлении (потоке) внешней энергии Солнца и внутренней энергии Земли. В зависимости от движущей силы, с определенной долей условности, внутри круговорота веществ можно выделить геологический, биологический и антропогенный круговороты. До возникновения человека на Земле осуществлялись только первые два.

В настоящее время сильное влияние на них оказывает хозяйственная деятельность человека, что ведет к нарушению биосферы и может иметь тяжелые последствия для будущих поколений землян. Рассмотрим круговороты основных биогенов - углерода, кислорода, азота, воды.

Круговорот углерода

Это один из самых важнейших биосферных круговоротов, поскольку углерод составляет основу органических веществ. В круговороте особенно велика роль диоксида углерода (рис.1). Запасы «живого» углерода в составе организмов суши и океана составляют, по разным данным, 550—750 Гт (1 Гт = 1 млрд. т), причем 99,5% его сосредоточено на суше, осталь­ное - в океане. Кроме того, в океане содержится до 700 Гт углерода в составе растворенного органического вещества.

Запасы неорганического углерода значительно больше. Над каждым квадратным метром суши и океана находится 1 кг углерода атмосферы и под каждым квадратным метром океана на глубине 4 км - 100 кг углерода в форме карбонатов и бикарбонатов. Еще больше запасов углерода в осадочных породах — в известняках содержатся карбонаты, в сланцах - керогены и т.д.

Рис.1. Круговорот углерода в биосфере

Примерно 1/3 «живого» углерода (около 200 Гт) циркулирует, т. е. ежегодно усваивается организмами в процессе фото синтеза и возвращается обратно в атмосферу, причем вклад океана и суши в этот процесс примерно сходный. Несмотря на то, что биомасса океана много меньше биомассы суши, его биологическая продукция создается множеством поколений краткоживущих водорослей (соотношение биомассы и биологической продукции в океане примерно такое же, как в пресноводной экосистеме.

До 50% (по некоторым данным — до 90%) углерода в форме диоксида возвращают в атмосферу микроорганизмы-реду­центы почвы. В этот процесс равный вклад вносят бактерии и грибы. Возврат диоксида углерода при дыхании всех прочих организмов, таким образом, меньше, чем при деятельности редуцентов.

Некоторые бактерии кроме диоксида углерода образуют метан. Выделение метана из почвы возрастает при переувлажнении, когда создаются анаэробные условия, благоприятные для деятельности метанобразующих бактерий. По этой причине резко увеличивается выделение метана лесной почвой, если древостой вырублен и вследствие уменьшения транспирации происходит ее заболачивание. Много метана выделяют рисовые поля и домашний скот.

В настоящее время отмечается нарушение круговорота углерода в связи со сжиганием значительного количества ископаемых углеродистых энергоносителей, а также дегумификацией пахотных почв и осушением болот. В целом содержание диоксида углерода в атмосфере ежегодно увеличивается на 0,6%. Еще быстрее возрастает содержание метана - на 1-2%. Эти газы являются главными виновниками усиления парникового эффекта, который на 50% зависит от диоксида углерода и на 33% - от метана.

Последствия усиления парникового эффекта для биосфе­ры неясны, наиболее вероятный прогноз - потепление климата. Однако поскольку «машинами» климата являются морские течения, то вследствие их изменения при таянии ледников в ряде районов возможно существенное похолода­ние (в том числе в Европе в результате изменения течения Гольфстрим). Под влиянием изменения концентрации диоксида углерода значительно учащаются крупные стихийные бедствия (наводнения, засухи и т.д.)

Приведенные данные характеризуют биогенный круговорот углерода. В круговороте участвуют и геохимические процессы, при которых происходит обмен атмосферного углерода и углерода, содержащегося в горных породах. Однако данных о скорости этих процессов нет. Полагают лишь, что их интенсивность менялась в истории планеты и парниковый эффект, который наблюдается сегодня, многократно прояв­лялся в прошлом при усилении геохимических процессов с выделением диоксида углерода и при ослаблении процессов, которые «оттягивали» его из атмосферы.

Для того чтобы вернуть круговороту углерода равновесие, необходимо увеличить площадь лесов и сократить выброс газов при сжигании углеродистых энергоносителей.

Круговорот воды

Вода испаряется не только с поверхности водоемов и почв, но и живых организмов, ткани которых на 70 % состоят из воды (рис.2). Большое количество воды (около 1/3 всей воды осадков) испаряется растениями, особенно деревьями: на созидание 1 кг органического вещества в разных районах они расходуют от 200 до 700 л воды.

Различные фракции воды гидросферы участвуют в круговороте по-разному и с разной скоростью. Так, полное обновление воды в составе ледников происходит за 8 тыс. лет, подземных вод - за 5 тыс. лет, океана - за 3 тыс. лет, почвы - за 1 год. Пары атмосферы и речные воды полностью обновляются за 10-12 суток.

До развития цивилизации круговорот воды был равновесным, однако в последние десятилетия вмешательство чело­века нарушает этот цикл. В частности, уменьшается испарение воды лесами ввиду сокращения их площади и, напротив, увеличивается испарение с поверхности почвы при ороше­нии сельскохозяйственных культур. Испарение воды с по­верхности океана уменьшается вследствие появления на ее значительной части пленки нефти. Влияет на круговорот воды потепление климата, вызываемое парниковым эффектом. При усилении этих тенденций могут произойти существен­ные изменения круговорота, опасные для биосферы.

Важную роль в годовом водном балансе биосферы играет океан. Испарение с его поверхности примерно в 2 раза больше, чем с поверхности суши.

 

Рис.2 Круговорот воды в биосфере

Круговорот азота

Циркуляция азота в биосфере протекает по следующей схеме (рис.3):

- перевод инертного азота атмосферы в доступные для растений формы (биологическая азотфиксация, образование аммиака при грозовых разрядах, производство азотных удобрений на заводах);

- усвоение азота растениями;

- переход части азота из растений в ткани животных;

накопление азота в детрите;

- разложение детрита микроорганизмами-редуцентами вплоть до восстановления молекулярного азота, который возвра­щается в атмосферу.

В морских экосистемах азотфиксаторами являются цианобактерии, связывающие азот в аммиак, который усваивается фитопланктоном.

В настоящее время вследствие уменьшения доли естественных экосистем биологическая азотфиксация стала меньше промышленной фиксации азота (соответственно 90-130 и 140 млн.т. в год), причем к 2020 г. ожидается увеличение промышленной азотфиксации на 60%. До половины азота, вносимого на поля, вымывается в грунтовые воды, озера, реки и вызывает эвтрофикацию водоемов.

Рис.3. Круговорот азота в биосфере

Значительное количество азота в форме оксидов азота поступает в атмосферу, а затем в почву и водоемы в результате ее загрязнения промышленностью и транспортом (кислотные дожди). Этот азот был изъят из атмосферы экосистемами гео­логического прошлого и длительное время находился «на де­поненте» в угле, газе, нефти, при сжигании которых он возвра­щается в круговорот. Например, в США азота с атмосферными

осадками в год выпадает 20—50 кг/га, а в отдельных районах эмиссия достигает 115 кг/га.

Экологически безопасной считается величина эмиссии азо­та 10—30 кг/га в год. При более высоких нагрузках происходят значительные изменения в экосистемах: почвы подкисляются, происходит выщелачивание питательных элементов в глубокие горизонты, возможно усыхание древостоев и массовое развитие заносных видов-нитрофилов. Кроме того, высокое содержание азота в растениях, выросших на загрязненных азотом почвах, повышает их поедаемость, что может привести к выпадению из растительных сообществ даже доминантных видов. Так, в неко­торых пустошах Западной Европы после того, как в вереске по­высилось содержание азота, массово размножился вересковый жук (его количество достигало 2000 экземпляров на 1 м2). Жук практически полностью выел этот кустарник из сообществ. Те же изменения в составе загрязняемых промышленным азотом сообществ отмечены и в Калифорнии.

Однако не всегда кислотные дожди оказывают пагубное влияние на экосистемы. Экосистемы степной зоны, где почвы имеют слабощелочную реакцию, от выпадения кислотных дождей не только не страдают, но даже увеличивают свою про­дуктивность за счет дополнительного азота.

Восстановление естественного круговорота азота возмож­но за счет уменьшения производства азотных удобрений, рез­кого сокращения промышленных выбросов оксидов азота в атмосферу и расширения площади посевов бобовых, кото­рые симбиотически связаны с бактериями-азотфиксаторами.

Круговорот кислорода

Кислород атмосферы имеет биогенное происхождение, и его циркуляция в биосфере осуществляется путем пополнения запасов в атмосфере в результате фотосинтеза растений и поглощения при дыхании организмов и сжигании топлива в хозяйстве человека (рис.4). Кроме того, некоторое количество кислорода образуется в верхних слоях атмосферы при диссоциации воды и разрушении озона под действием ультрафиолетового излучения; часть кислорода расходуется на окислительные процессы в земной коре, при вулканических извержениях и др.

Этот круговорот очень сложный, так как кислород вступа­ет в разнообразные реакции и входит в состав очень большого числа органических и неорганических соединений, и замед­ленный. Для полного обновления всего кислорода атмосферы требуется около 2 тысяч лет (для сравнения: ежегодно обнов­ляется около 1/3 диоксида углерода атмосферы).

В настоящее время поддерживается равновесный круговорот кислорода, хотя в крупных густонаселенных городах с большим количеством транспорта и промышленных предприятий возникают локальные нарушения.

Рис.4. Круговорот кислорода в биосфере

Однако отмечается ухудшение состояния озонового слоя и образование «озоновых дыр» (областей с пониженным со­держанием озона) над полюсами Земли, что представляет эко­логическую опасность. Временные «дыры» возникают также над обширными районами вне полюсов (в том числе и над континентальными районами России). Причиной этих явле­ний является попадание в озоновый слой хлора и оксидов азо­та, которые образуются в почве из минеральных удобрений при их разрушении микроорганизмами, а также содержатся в выхлопных газах автомобилей. Эти вещества разрушают озон с более высокой скоростью, чем он может образовываться из кислорода под влиянием ультрафиолетовых лучей.

Сохранение озонового слоя — одна из глобальных задач мирового сообщества. Для прекращения разрушения озонового слоя и его восстановления необходимо отказаться от использования хлорсодержащих веществ - хлорфторуглеродов (фреонов), используемых в аэрозольных упаковках и холодильных установках. Необходимо также уменьшить количество выхлопных газов двигателей внутреннего сгорания и дозы азотных минеральных удобрений в сельском хозяйстве. Отрицательно сказывается на здоровье человека и чрезмерно низкое содержание озона в атмосфере.

Круговорот фосфора

О круговороте фосфора за обозримое время можно говорить лишь условно. Будучи гораздо тяжелее углерода, кислорода и азота, фосфор почти не образует летучих соединений — он стекает с суши в океан, а возвращается в основном при подъеме суши в ходе геологических преобразований. По этой причине круговорот фосфора называют «открытым» (рис.5).

Рис.5 Круговорот фосфора в биосфере

Фосфор содержится в горных породах, откуда выщелачивается в почву и усваивается растениями, а затем по пищевым цепям переходит к животным. После разложения мертвых тел растений и животных не весь фосфор вовлекается в круговорот, часть его вымывается из почвы в водоемы (реки, озера, моря). Там фосфор оседает на дно и почти не возвращается на сушу, лишь небольшое количество его возвращается с выловленной человеком рыбой или с экскрементами птиц, питающихся рыбой. Скопления экскрементов морских птиц служили в недалеком прошлом источником ценнейшего органического удобрения - гуано, но в настоящее время ресурсы гуано практически исчерпаны.

Отток фосфора с суши в океан усиливается вследствие возрастания поверхностного стока воды при уничтожении лесов, распашке почв и внесении фосфорных удобрений. Поскольку запасы фосфора на суше ограничены, а его возврат из океана проблематичен (хотя в настоящее время активно исследуются возможности его добычи со дна океана), в будущем в земледелии возможен острый дефицит фосфора, что вызовет снижение урожаев (в первую очередь зерна). Поэтому необходима экономия ресурсов фосфора.

Самостоятельная работа № 6

Экосистемы суши

Размещение по земной поверхности основных наземных биомов определяют два абиотических фактора — температура и количество осадков. Климат в разных районах земного шара неодинаков. Годовая сумма осадков меняется от 0 до 2500 мм и более. При этом они выпадают равномерно в течение года или их основная доля прихо­дится на определенный период — влажный сезон. Среднегодовая температура также варьирует от отрицательных величин до 38°С. Температуры могут быть практически постоянными в течение всего года (у экватора) или меняться по сезонам.

Тундры (в северном полушарии к северу от тайги). Климат очень холодный с полярным днем и полярной ночью, среднегодовая температура ниже —5°С. За несколько недель короткого лета земля оттаивает не более чем на один метр в глубину. Осадков менее 200—300 мм в год. Растительность: отсутствуют деревья, господствуют медленно растущие лишайники, мхи, злаки и осоки, стелющиеся или карликовые кустарники (брусника, черника, карликовая береза). Животный мир. крупные травоядные копытные (северный олень, мускусный бык), мелкие роющие млекопитающие (лемминги), хищники, приобретающие зимой маскирующую белую окраску (песец, рысь, горностай, полярная сова). В тундре коротким летом гнездится большое число перелетных птиц, среди них особенно много водоплавающих, которые пита­ются имеющимися здесь в изобилии насекомыми и пресноводными беспозвоночными. Почвы тундровые — бедные с малой мощностью над слоем вечной мерзлоты.

Бореальные хвойные леса (тайга) (северные районы Европы, Азии и Северной Америки). Климат: долгая и холодная зима, много осадков выпадает в виде снега. Растительность: господствуют вечнозе­леные хвойные леса (ель, пихта, сибирская кедровая сосна, лиственница, сосна) с мощной лесной подстилкой. Животный мир: крупные траво­ядные копытные (лось, северный олень), мелкие растительноядные млекопитающие (заяц-беляк, белка, грызуны), волк, рысь, лисица, черный медведь, гризли, росомаха, норка и другие хищники, многочисленные кро­вососущие насекомые во время короткого лета. Множество болот и озер. Почвы подзолистые и дерново-подзолистые — маломощные и бедные.

Листопадные леса умеренной зоны (широколиственные леса) (Западная Европа, Восточная Азия, восток США). Климат сезонный с зимними температурами ниже 0°С, осадков 750—1500 мм в год. Растительность: господствуют леса из широколиственных листопадных пород деревьев высотой до 35—45 м (дуб, бук, клен), кустарниковый подлесок, мхи, лишайники, мощная лесная подстилка. Животный мир: млекопитающие (лоси, медведи, рыси, лисицы, волки, белки, землеройки), птицы (дятлы, дрозды, совы, соколы), пресмыкающиеся (змеи), земно­водные (лягушки, саламандры), рыбы (форель, окунь, сом и др.). Биота адаптирована к сезонному климату: спячка, миграции, состояние покоя в зимние месяцы. Почвы бурые лесные. В этих районах человеческая цивилизация получила наибольшее развитие, поэтому большая часть широколиственных лесов заменена культурными сообществами.

Степи умеренной зоны (в Евразии, центр Северной Америки (прерии), юго-восток Южной Америки (пампасы), отдельные районы Афри­ки, Австралии, Новой Зеландии (туссоки)). Климат сезонный, лето от умеренного теплого до жаркого, зимние температуры ниже 0°С, осад­ков 250—750 мм в год. Растительность: господствуют дерновинные злаки высотой до 2 м и выше в некоторых прериях Северной Амери­ки или до 50 см, например, в степях России, с отдельными деревьями и кустарниками на влажных участках. Животный мир: крупные расти­тельноядные млекопитающие — бизоны, вилорогие антилопы (Север­ная Америка), сайгаки, а ранее дикие лошади — тарпан (Евразия), кен­гуру (Австралия), жирафы, зебры, белые носороги, антилопы (Африка); мелкие роющие млекопитающие (суслики, сурки, полевки, кролики), хищники (койоты, львы, леопарды, гепарды, гиены), разнообразные птицы. Почвы: черноземы — самые плодородные почвы в мире — и каштановые. Большая часть степей в настоящее время используется под паш­ню, пастбища, сенокосы и т.д.

Чапараль (Средиземноморье, южный берег Австралии, в Калифорнии, Мексике и Грузии). Климат мягкий умеренный, осадков 500— 700 мм, выпадают теплой зимой, лето засушливое. Растительность: деревья (лавр, вечнозеленые дубы) и кустарники с жесткими вечнозе­леными листьями. Почвы коричневые и серо-коричневые.

Тропический грасленд и саванны (Центральная и Восточная Африка, Южная Америка, Австралия, значительная часть южной Индии). Климат сухой и жаркий большую часть года, температура высокая круглый год, осадки, 750—1650 мм в год, распределяются неравномерно по сезонам (влажный и сухой сезоны). Растительность: густая травянистая растительность (злаковые) с редкими листопадными де­ревьями (баобабы, акации, пальмы). Животный мир. крупные расти­тельноядные млекопитающие (антилопы, зебры, жирафы, носороги), хищ­ники (львы, леопарды, гепарды), птицы (африканский страус, грифы). Много кровососущих насекомых, например, муха цеце. Почвы красные ферраллитные, красно-бурые и коричнево-красные.

Пустыни травянистая и кустарниковая (некоторые районы Африки, например Сахара, Ближнего Востока и Центральной Азии, Большой Бассейн и юго-запад США, север Мексики и др.). Климат очень сухой, с жарким днем и холодными ночами, осадков менее 200—250 мм в год. Растительность: ксерофитные травы и редкостойный кустарник, кактусы, множество эфемеров, быстро развивающихся после непродолжительных дождей. Корневые системы у растений обширные, поверхностные, перехватывающие влагу редких осадков или стержне­вые корни, проникающие в землю до уровня грунтовых вод (30 м и глубже). Животный мир: разнообразные грызуны, жабы, ящерицы, змеи

и другие пресмыкающиеся, совы, орлы, грифы, мелкие птицы и насекомые в большом количестве, верблюды. Почвы светло-бурые, сероземы, такыры.

Полувечнозеленые сезонные (листопадные) тропические леса (тропическая часть Азии, Центральная Америка). Климат со сменой сухого (4—6 месяцев) и влажного сезонов, среднегодовое количе­ство осадков 800—1300 мм в год. Растительность: господствуют леса. Доминируют деревья верхнего яруса, сбрасывающие листья в сухой сезон. Нижний ярус образуют в основном вечнозеленые дере­вья и кустарники. Из вечнозеленых деревьев этих экосистем наибо­лее известна пальма. Животный мир: практически так же богат, как в вечнозеленых тропических дождевых лесах. Почвы красные ферраллитные.

Вечнозеленые тропические дождевые леса (север Южной Америки, Центральная Америка, западная и центральная части экваториальной Африки, Юго-Восточная Азия, прибрежные районы северо-запада Австралии, острова Индийского и Тихого океанов). Климат без смены сезонов в связи с близостью к экватору, среднегодовая температура выше 17°С (обычно 28°С), среднегодовое количество осадков превышает 2000—2500 мм в год. Растительность: господствуют леса. Деревья разной высоты образуют густой полог из трех ярусов (верх­ний ярус, полог и нижний ярус). Кустарники и травянистая растительность практически отсутствуют. Видовое разнообразие растений огромно. Животный мир: видовой состав богаче, чем во всех других биомах вместе взятых. Встречаются многочисленные экзотические насекомые с яркой окраской, земноводные (лягушки), пресмыкающиеся (ящерицы, змеи, черепахи), птицы (попугаи, павлины, кондор), млекопитающие (обезьяны, муравьеды, ягуары). Почвы красно-желтые ферраллитные — маломощные и бедные органическим веществом и минеральными элементами питания растений. Большая часть питательных веществ закреплена в биомассе растительности.



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 351; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.89.89 (0.014 с.)