Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Тема 1 Неопределенный интеграл↑ Стр 1 из 3Следующая ⇒ Содержание книги
Поиск на нашем сайте
СОДЕРЖАНИЕ
ВВЕДЕНИЕ. 4 МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ЗАДАНИЯ ДЛЯ ДОМАШНЕЙ КОНТРОЛЬНОЙ РАБОТЫ.. 15 РЕКОМЕНДУЕМЫЙ СПИСОК ЛИТЕРАТУРЫ.. 22
ВВЕДЕНИЕ Цель курса математический анализ в системе подготовки – освоение необходимого математического аппарата. Задачи изучения математического анализа как фундаментальной дисциплины состоят в развитии логического и алгоритмического мышления, в выработке навыков решения основных задач математического анализа, что в конечном итоге формирует навык исследования моделей реальных процессов. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ ЗАДАНИЙ Раздел IИНТЕГРАЛЬНОЕ ИCЧИЛЕНИЕ И ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Тема 1 Неопределенный интеграл
Понятие первообразной и неопределенного интеграла. Свойства неопределенного интеграла (с доказательством). Таблица основных интегралов. Интегрирование методом разложения, замены переменной и по частям. Понятие о «неберущихся» интегралах. (1, гл. 10, § 10.1–10.5, 10.8; с. 247–265); (2, гл. 10); (3,гл.9). Студенту необходимо, прежде всего, разобраться в принципиальном вопросе: интегральное исчисление решает обратную задачу – нахождение самой функции по ее производной. Эта задача является более сложной по сравнению с задачей дифференцирования. Понятие первообразной функции (1, с.251) связывается геометрической интерпретацией, когда первообразные отличаются на число (константу). Отсюда следует определение неопределенного интеграла, как «совокупность всех первообразных для функции f(x) на промежутке Х (ось абсцисс)». òf(x)dx=F(x)+C, f(x) – подинтегральная функция, f(x)dx – подынтегральное выражение, F(x) – первообразная функция, ò – знак интеграла, С – константа. Следует изучить свойства (с доказательствами) неопределенного интеграла (1, с.253, 254), знать табличные интегралы (1, с.255). Обратить внимание на свойство 2 (1, с.253): дифференциал неопределенного интеграла равен подынтегральному выражению d(òf(x)dx)=f(x)dx, то есть операции интегрирования и дифференцирования взаимно обратны (знаки d и ò взаимно уничтожают друг друга). Непосредственное интегрирование предполагает (1, примеры 1.10–10.3, с.255–257) сведение интегралов к табличным за счет тождественных преобразований и основных правил интегрирования. Для вычисления интегралов применяют линейную подстановку t=kx+b, а также другие подстановки: а) переменная интегрирования х заменяется функцией переменной t: x=j(t), а dx=j¢(t)dt; òf(x)dx=òf(j(t))j¢(t)dt; б) новая переменная t вводится как функция переменной интегрирования x: t=j(x), dt=j¢(x)dx; òf(j(x))j¢(x)dx=òf(t)dt. Последнюю подстановку удобно применять, если подынтегральное выражение содержит дифференциал (производную) функции j(х) с точностью до постоянного множителя. Если интеграл, полученный после замены переменной, стал «проще» данного (преобразован в табличный или приводящийся к табличному), то цель подстановки достигнута. После интегрирования функции по переменной t необходимо вернуться к прежней переменной х, выразив t через хпо формуле, применявшейся при подстановке. Примеры различных подстановок даны в (1, § 10.3, 10.6). Практическое применение формулы интегрирования по частям ((10.21), с. 263), если оно целесообразно, связано с проблемой правильного разбиения подынтегральноговыражения на сомножители u и dv. Отметим, что формулу интегрирования по частям, как правило, удобно применять, если подынтегральная функция является произведением многочлена на показательную или логарифмическую функцию (1, примеры 10.10–10.13, с. 263-269). Рекомендуется разобрать задачи с решениями N 10.1–10.4, 10.6–10.8, 10.9-10.11, 10.13, 10.14, 10.18а, 10.23, 10.24а, 10.25-10.27 и задачи для самостоятельного решения N 10.33-10.39, 10.41-10 45, 10 47–10.54, 10.55–10.59, 10.61, 10.63-10.65, 10.68–10.70 по учебнику (1) и аналогичные задачи по практикуму (2), обратив особое внимание на интегрирование методом подстановки.
Раздел II Ряды Тема 4 Числовые ряды
ЗАДАНИЯ ДЛЯ ДОМАШНЕЙ КОНТРОЛЬНОЙ РАБОТЫ ВАРИАНТ №1
Задание № 1. Найти точки экстремума функции нескольких переменных:
Задание № 2. Найти интегралы:
Задание № 3. Исследовать несобственный интеграл на сходимость
Задание № 4. Вычислить сумму ряда Задание № 5. Исследовать ряды на сходимость 1. 2. Задание № 6. Решить дифференциальное уравнение: х2dу = у2dх, если при х = 1; у = 1.
ВАРИАНТ №2 Задание № 1. Найти точки экстремума функции нескольких переменных: Задание № 2. Найти интегралы: 1. 2. Задание № 3. Исследовать несобственный интеграл на сходимость
Задание № 4. Вычислить сумму ряда Задание № 5. Исследовать ряды на сходимость 1. 2. Задание № 6. Решить дифференциальное уравнение:
ВАРИАНТ №3 Задание № 1. Найти точки экстремума функции нескольких переменных:
Задание № 2. Найти интегралы: 1. 2.
Задание № 3. Исследовать несобственный интеграл на сходимость
Задание № 4. Вычислить сумму ряда Задание № 5. Исследовать ряды на сходимость 1. 2. Задание № 6. Решить дифференциальное уравнение:
ВАРИАНТ №4
Задание № 1. Найти точки экстремума функции нескольких переменных:
Задание № 2. Найти интегралы: 1. 2.
Задание № 3. Исследовать несобственный интеграл на сходимость
Задание № 4. Вычислить сумму ряда Задание № 5. Исследовать ряды на сходимость 1. 2. Задание № 6. Решить дифференциальное уравнение:
ВАРИАНТ №5
Задание № 1. Найти точки экстремума функции нескольких переменных:
Задание № 2. Найти интегралы: 1. 2.
Задание № 3. Исследовать несобственный интеграл на сходимость
Задание № 4. Вычислить сумму ряда Задание № 5. Исследовать ряды на сходимость 1. 2. Задание № 6. Решить дифференциальное уравнение: ВАРИАНТ №6
Задание № 1. Найти точки экстремума функции нескольких переменных:
Задание № 2. Найти интегралы: 1. 2.
Задание № 3. Исследовать несобственный интеграл на сходимость
Задание № 4. Вычислить сумму ряда Задание № 5. Исследовать ряды на сходимость 1. 2. Задание № 6. Решить дифференциальное уравнение:
ВАРИАНТ №7
Задание № 1. Найти точки экстремума функции нескольких переменных:
Задание № 2. Найти интегралы: 1. 2.
Задание № 3. Исследовать несобственный интеграл на сходимость Задание № 4. Вычислить сумму ряда Задание № 5. Исследовать ряды на сходимость 1. 2. Задание № 6. Решить дифференциальное уравнение:
ВАРИАНТ №8
Задание № 1. Найти точки экстремума функции нескольких переменных:
Задание № 2. Найти интегралы: 1. 2.
Задание № 3. Исследовать несобственный интеграл на сходимость
Задание № 4. Вычислить сумму ряда Задание № 5. Исследовать ряды на сходимость 1. 2. Задание № 6. Решить дифференциальное уравнение:
ВАРИАНТ №9
Задание № 1. Найти точки экстремума функции нескольких переменных:
Задание № 2. Найти интегралы: 1. 2.
Задание № 3. Исследовать несобственный интеграл на сходимость
Задание № 4. Вычислить сумму ряда Задание № 5. Исследовать ряды на сходимость 1. 2. Задание № 6. Решить дифференциальное уравнение:
ВАРИАНТ №10
Задание № 1. Найти точки экстремума функции нескольких переменных:
Задание № 2. Найти интегралы: 1. 2.
Задание № 3. Исследовать несобственный интеграл на сходимость
Задание № 4. Вычислить сумму ряда Задание № 5. Исследовать ряды на сходимость 1. 2. Задание № 6. Решить дифференциальное уравнение:
РЕКОМЕНДУЕМЫЙ СПИСОК ЛИТЕРАТУРЫ
Основная литература: 1. Абрамов, А.А. Введение в тензорный анализ и риманову геометрию: учеб. пособие для вузов / А.А.Абрамов. - 2-е изд. - М.: Физматлит, 2004. - 111с. 2. Белова, Т.И. Вычисление неопределенных интегралов. Обыкновенные дифференциальные уравнения. Компьютерный курс: учеб. пособие / Т.И.Белова, А.А.Грешилов, И.В.Дубограй; Ред. А.А.Грешилов. - М.: Логос, 2004. - 184 с. + 1 эл. опт. диск (CD-ROM). 3. Берман, Г.Н. Сборник задач по курсу математического анализа: учеб. пособие / Г.Н.Берман. - 22-е изд., перераб. - СПб.: Профессия, 2006. - 432 с. 4. Берман, Г.Н. Сборник задач по курсу математического анализа: учеб. пособие / Г.Н.Берман. - 22-е изд., перераб. - СПб.: Профессия, 2005. - 432 с. 5. Виноградова, И.А. Задачи и упражнения по математическому анализу: учеб. для вузов. В 2 ч. Ч.1 / И.А.Виноградова, С.Н.Олехник, В.А.Садовничий. - 4-е изд., стереотип. - М.: Дрофа, 2004. - 725 с. 6. Виноградова, И.А. Задачи и упражнения по математическому анализу: учеб. пособие для вузов. Ч. 1. Дифференциальное и интегральное исчисление / И.А.Виноградова, С.Н.Олехник, В.А.Садовничий; Ред. В.А.Садовничий. - 3-е изд., испр. - М.: ДРОФА, 2001. - 725 с. 7. Виноградова, И.А. Задачи и упражнения по математическому анализу: учеб. пособие для вузов. Ч.2. Ряды, несобственные интегралы, ряды Фурье, преобразование Фурье / И.А.Виноградова, С.Н.Олехник, В.А.Садовничий; ред. В.А.Садовничий. - 3-е изд., испр. - М.: ДРОФА, 2001. - 712 с. 8. Голоскоков, Д.П. Уравнения математической физики. Решение задач в системе Maple: учеб. для вузов / Д.П.Голоскоков. - СПб.: Питер, 2004. - 538с. 9. Гурова, З.И. Математический анализ. Начальный курс с примерами и задачами: учеб. для втузов / З.И.Гурова, С.Н.Каролинская, А.П.Осипова; Ред. А.И.Кибзун. - М.: Физматлит, 2002. - 351 с. 10. Лукьянов, А.В. Обыкновенные дифференциальные уравнения: учеб. пособие по решению задач / А.В.Лукьянов, Ю.Д.Погуляев. - Челябинск: Полиграф-Мастер, 2006. 11. Мартинсон, Л.К. Дифференциальные уравнения математической физики: учеб. для втузов / Л.К.Мартинсон, Ю.И.Малов; Ред. В.С. Зарубин, А.П.Крищенко. - 2-е изд. - М.: МГТУ им. Н.Э. Баумана, 2002. - 367 с. 12. Математический анализ в вопросах и задачах: учеб. пособие для вузов / В.Ф.Бутузов, Н.Ч.Крутицкая, Г.Н.Медведев, А.А.Шишкин; Ред. В.Ф.Бутузов. - 5-е изд., испр. - М.: ФИЗМАТЛИТ, 2002. - 479 с. 13. Пантелеев, А.В. Теория функций комплексного переменного и операционное исчисление в примерах и задачах: учеб. пособие для втузов / А.В.Пантелеев, Якимова А.С. - М.: Высш. шк., 2001. - 446 с. 14. Пискунов, Н.С. Дифференциальное и интегральное исчисления: учеб. для втузов. В 2 т. Т. 1 / Н.С.Пискунов. - Стер. изд. - М.: ИНТЕГРАЛ-ПРЕСС, 2004. - 415 с. 15. Пискунов, Н.С. Дифференциальное и интегральное исчисления: учебник для втузов. В 2 т. Т. 2 / Н.С.Пискунов. - Стер. изд. - М.: ИНТЕГРАЛ-ПРЕСС, 2004. - 544 с. 16. Полянин, А.Д. Методы решения нелинейных уравнений математической физики и механики: учеб. пособие для вузов / А.Д.Полянин, В.Ф.Зайцев, А.И.Журов. - М.: Физматлит, 2005. - 254 с. 17. Русак, В.Н. Математическая физика: учеб. пособие для ун-тов / В.Н.Русак. - 2-е изд., испр. - М.: Едиториал УРСС, 2006. - 244 с. 18. Фихтенгольц, Г.М. Курс дифференциального и интегрального исчисления: учеб. для вузов. В 3 т. Т. 3 / Г.М. Фихтенгольц. - 8-е изд. - М.: ФИЗМАТЛИТ, 2003. - 727 с. 19. Фихтенгольц, Г.М. Основы математического анализа: учебник для вузов. Ч. 1 / Г.М. Фихтенгольц. - 6-е изд., стер. - СПб. Лань, 2005. - 440 с. - Алф. указ.: С. 434-440. 20. Фихтенгольц, Г.М. Основы математического анализа: учебник для вузов. Ч. 2 / Г.М.Фихтенгольц. - 6-е изд., стер. - СПб.: Лань, 2005. - 463 с. 21. Фихтенгольц, Г.М. Основы математического анализа: учебник. Ч. 1 / Г. М. Фихтенгольц. - 8-е изд. стер. - СПб.; М.; Краснодар: Лань, 2006. - 440 с. 22. Фихтенгольц, Г.М. Основы математического анализа: учебник. Ч. 2 / Г. М.Фихтенгольц. - 8-е изд. стер. - СПб.; М.; Краснодар: Лань, 2006. - 463 с. 23. Шипачев, В.С. Математический анализ: учеб. пособие для вузов / В.С.Шипачев. - М.: Высш. шк., 2002. - 176 с.
Дополнительная литература: 1. Антоневич, А.Б. Задачи и упражнения по функциональному анализу. Учеб.пособие. / А.Б.Антоневич, П.Н.Князев, Я.В.Радыно – М.: Едиториал УРСС, 2004 – 205с. 2. Босс, В. Лекции по математике: анализ. / В.Босс – М.: Едиториал УРСС, 2004 – 213с. 3. Босс, В. Лекции по математике: дифференциальные уравнения. / В.Босс– М.: Едиториал УРСС, 2004 – 204 с. 4. Васильева, А.Б. Интегральные уравнения / А.Б.Васильева, Н.А.Тихонов. - 2-е изд. - М.: ФИЗМАТЛИТ, 2004. – 175с. 5. Высшая математика в упражнениях и задачах. В 2 ч. Ч.2 / П.Е.Данко [и др.]. - 7-е изд., испр. - М.: Оникс: Мир и Образование(М.), 2008. - 448 с. 6. Данко, П.Е. Высшая математика в упражнениях и задачах. В 2 ч. Ч.2 / П.Е.Данко, А.Г.Попов, Т.Я.Кожевникова, С.П.Данко. - 6-е изд. - М.: Оникс: Мир и Образование(М.), 2007. - 416 с. 7. Данко, П.Е. Высшая математика в упражнениях и задачах. В 2-х ч. Ч.2 / П.Е.Данко, А.Г.Попов, Т.Я.Кожевникова. - 6-е изд. - М.: Оникс: Мир и Образование(М.), 2005. - 416 с. 8. Ерофеенко, В.Т. Уравнения с частными производными и математические модели в экономике: курс лекций / В.Т.Ерофеенко, И.С.Козловская. - 2-е изд., перераб. и доп. - М.: Едиториал УРСС, 2004. - 244с. 9. Задачи и упражнения по математическому анализу для втузов / Ред. Б.П.Демидович. – М.: АСТ-Астрель, 2004. - 495 с. 10. Зайцев, В.Ф. Справочник по обыкновенным дифференциальным уравнениям / В.Ф.Зайцев, А.Д.Полянин. - М.: Физматлит, 2001. - 576 с. 11. Краснов, М.Л. Операционное исчисление. Теория устойчивости: Задачи и примеры с подробными решениями: учеб.пособие. / М.Л.Краснов, А.И.Киселев, Г.И. Крамаренко – М.: Едиториал УРСС, 2003 – 175с. 12. Краснов, М.Л., Интегральные уравнения. Задачи и примеры с подробными решениями: учеб.пособие. / М.Л.Краснов, А.И.Киселев, Г.И. Крамаренко – М.: Едиториал УРСС, 2003 – 192с. 13. Кудрявцев, Л.Д. Краткий курс математического анализа: учеб. для вузов. В 2 т. Т. 1 Дифференциальное и интегральное исчисления функции одной переменной. Ряды / Л.Д.Кудрявцев. - 2-е изд., перераб. и доп. - Висагинас: Alfa, 1998. - 397 с. 14. Лукьянов, А.В. Введение в теорию уравнений с частными производными и математическую физику: метод. указания по решению уравнений теплопроводности / А.В.Лукьянов, Ю.Д.Погуляев. - Челябинск: Полиграф-Мастер, 2006. - 59 с. 15. Математический анализ и линейная алгебра. Учебное–методическое пособие. / Под ред. Н.Ш.Кремера. – М.: ВЗФЭИ, 2002. 16. Подчуфаров, Ю.Б. Физико-математическое моделирование систем управления и комплексов / Ю.Б.Подчуфаров; Ред. А.Г. Шипунов. - М.: Физматлит, 2002. - 167 с. 17. Привалов, И.И. Введение в теорию функций комплексного переменного: учеб. для вузов / И.И. Привалов - 14-е изд., стереотип. - М.: Высш. шк., 1999. - 432с. 18. Сборник задач и упражнений по математическому анализу. Ч.1 / С.И.Ляшко [и др.]; Ред. И.И. Ляшко. - М.; СПб.; Киев: Диалектика, 2001. - 430 с. 19. Сикорский, Ю.С. Обыкновенные дифференциальные уравнения. С приложением их к некоторым техническим задачам / Ю.С.Сикорский; Ред. С.Г. Михлин. - 2-е изд., стереотип. - М.: УРСС, 2005. - 155 с. 20. Стакун, А.А. Математический анализ: конспект лекций с решениями типовых примеров и метод. указ. к инд. заданиям (для студ.-заоч.). В 2 ч. Ч.2 / А.А.Стакун, С.И.Фролов. - СПб.: Политехника, 2001. - 147 с. 21. Цлаф, Л.Я. Вариационное исчисление и интегральные уравнения: справ. рук. / Л.Я.Цлаф. - 3-е изд., стереотип. – М.: Лань, 2005. - 191 с. СОДЕРЖАНИЕ
ВВЕДЕНИЕ. 4 МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ЗАДАНИЯ ДЛЯ ДОМАШНЕЙ КОНТРОЛЬНОЙ РАБОТЫ.. 15 РЕКОМЕНДУЕМЫЙ СПИСОК ЛИТЕРАТУРЫ.. 22
ВВЕДЕНИЕ Цель курса математический анализ в системе подготовки – освоение необходимого математического аппарата. Задачи изучения математического анализа как фундаментальной дисциплины состоят в развитии логического и алгоритмического мышления, в выработке навыков решения основных задач математического анализа, что в конечном итоге формирует навык исследования моделей реальных процессов. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНЫХ ЗАДАНИЙ Раздел IИНТЕГРАЛЬНОЕ ИCЧИЛЕНИЕ И ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ Тема 1 Неопределенный интеграл
Понятие первообразной и неопределенного интеграла. Свойства неопределенного интеграла (с доказательством). Таблица основных интегралов. Интегрирование методом разложения, замены переменной и по частям. Понятие о «неберущихся» интегралах. (1, гл. 10, § 10.1–10.5, 10.8; с. 247–265); (2, гл. 10); (3,гл.9). Студенту необходимо, прежде всего, разобраться в принципиальном вопросе: интегральное исчисление решает обратную задачу – нахождение самой функции по ее производной. Эта задача является более сложной по сравнению с задачей дифференцирования. Понятие первообразной функции (1, с.251) связывается геометрической интерпретацией, когда первообразные отличаются на число (константу). Отсюда следует определение неопределенного интеграла, как «совокупность всех первообразных для функции f(x) на промежутке Х (ось абсцисс)». òf(x)dx=F(x)+C, f(x) – подинтегральная функция, f(x)dx – подынтегральное выражение, F(x) – первообразная функция, ò – знак интеграла, С – константа. Следует изучить свойства (с доказательствами) неопределенного интеграла (1, с.253, 254), знать табличные интегралы (1, с.255). Обратить внимание на свойство 2 (1, с.253): дифференциал неопределенного интеграла равен подынтегральному выражению d(òf(x)dx)=f(x)dx, то есть операции интегрирования и дифференцирования взаимно обратны (знаки d и ò взаимно уничтожают друг друга). Непосредственное интегрирование предполагает (1, примеры 1.10–10.3, с.255–257) сведение интегралов к табличным за счет тождественных преобразований и основных правил интегрирования. Для вычисления интегралов применяют линейную подстановку t=kx+b, а также другие подстановки: а) переменная интегрирования х заменяется функцией переменной t: x=j(t), а dx=j¢(t)dt; òf(x)dx=òf(j(t))j¢(t)dt; б) новая переменная t вводится как функция переменной интегрирования x: t=j(x), dt=j¢(x)dx; òf(j(x))j¢(x)dx=òf(t)dt. Последнюю подстановку удобно применять, если подынтегральное выражение содержит дифференциал (производную) функции j(х) с точностью до постоянного множителя. Если интеграл, полученный после замены переменной, стал «проще» данного (преобразован в табличный или приводящийся к табличному), то цель подстановки достигнута. После интегрирования функции по переменной t необходимо вернуться к прежней переменной х, выразив t через хпо формуле, применявшейся при подстановке. Примеры различных подстановок даны в (1, § 10.3, 10.6). Практическое применение формулы интегрирования по частям ((10.21), с. 263), если оно целесообразно, связано с проблемой правильного разбиения подынтегральноговыражения на сомножители u и dv. Отметим, что формулу интегрирования по частям, как правило, удобно применять, если подынтегральная функция является произведением многочлена на показательную или логарифмическую функцию (1, примеры 10.10–10.13, с. 263-269). Рекомендуется разобрать задачи с решениями N 10.1–10.4, 10.6–10.8, 10.9-10.11, 10.13, 10.14, 10.18а, 10.23, 10.24а, 10.25-10.27 и задачи для самостоятельного решения N 10.33-10.39, 10.41-10 45, 10 47–10.54, 10.55–10.59, 10.61, 10.63-10.65, 10.68–10.70 по учебнику (1) и аналогичные задачи по практикуму (2), обратив особое внимание на интегрирование методом подстановки.
|
||||
Последнее изменение этой страницы: 2017-02-07; просмотров: 260; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.14.134.18 (0.008 с.) |