Указание номинального расположения 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Указание номинального расположения



4.1. Линейные и угловые размеры, определяющие номинальное расположение и (или) номинальную форму элементов, ограничиваемых допуском, при назначении позиционного допуска, допуска наклона, допуска формы заданной поверхности или заданного профиля, указывают на чертежах без предельных отклонений и заключают в прямоугольные рамки (черт. 31).

Черт. 31

ОБОЗНАЧЕНИЕ ЗАВИСИМЫХ ДОПУСКОВ

5.1. Зависимые допуски формы и расположения обозначают условным знаком , который помещают:

после числового значения допуска, если зависимый допуск связан с действительными размерами рассматриваемого элемента (черт. 32 а);

после буквенного обозначения базы (черт. 32 б) или без буквенного обозначения в третьей части рамки (черт. 32 г),если зависимый допуск связан с действительными размерами базового элемента;

после числового значения допуска и буквенного обозначения базы (черт. 32 в) или без буквенного обозначения (черт. 32 д),если зависимый допуск связан с действительными размерами рассматриваемого и базового элементов.

5.2. Если допуск расположения или формы не указан как зависимый, то его считают независимым.

Черт. 32


ПРИЛОЖЕНИЕ 1
Обязательное

ФОРМА И РАЗМЕРЫ ЗНАКОВ


ПРИЛОЖЕНИЕ 2
Справочное

ПРИМЕРЫ УКАЗАНИЯ НА ЧЕРТЕЖАХ ДОПУСКОВ ФОРМЫ И РАСПОЛОЖЕНИЯ ПОВЕРХНОСТЕЙ

Вид допуска Указания допусков формы и расположения условным обозначением Пояснение
1. Допуск прямолинейности Допуск прямолинейности образующей конуса 0,01 мм.
Допуск прямолинейности оси отверстия Æ 0,08 мм (допуск зависимый).
Допуск прямолинейности поверхности 0,25 мм на всей длине и 0,1 мм на длине 100 мм.
Допуск прямолинейности поверхности в поперечном направлении 0,06 мм, в продольном направлении 0,1 мм.
2. Допуск плоскостности Допуск плоскостности поверхности 0,1 мм.
Допуск плоскостности поверхности 0,1 мм на площади 100´100 мм.
Допуск плоскостности поверхностей относительно общей прилегающей плоскости 0,1 мм.
Допуск плоскостности каждой поверхности 0,01 мм.
3. Допуск круглости Допуск круглости вала 0,02 мм.
Допуск круглости конуса 0,02 мм.
4. Допуск цилиндричности Допуск цилиндричности вала 0,04 мм.
Допуск цилиндричности вала 0,01 мм на длине 50 мм. Допуск круглости вала 0,004 мм.
5. Допуск профиля продольного сечения Допуск круглости вала 0,01 мм. Допуск профиля продольного сечения вала 0,016 мм.
Допуск профиля продольного сечения вала 0,1 мм.
6. Допуск параллельности Допуск параллельности поверхности относительно поверхности А 0,02 мм.
Допуск параллельности общей прилегающей плоскости поверхностей относительно поверхности А 0,1 мм.
Допуск параллельности каждой поверхности относительно поверхности А 0,1 мм.
Допуск параллельности оси отверстия относительно основания 0,05 мм.
Допуск параллельности осей отверстий в общей плоскости 0,1 мм. Допуск перекоса осей отверстий 0,2 мм. База - ось отверстия А.
Допуск параллельности оси отверстия относительно оси отверстия А 00,2 мм.
7. Допуск перпендикулярности Допуск перпендикулярности поверхности относительно поверхности А 0,02 мм.
Допуск перпендикулярности оси отверстия относительно оси отверстия А 0,06 мм.
Допуск перпендикулярности оси выступа относительно поверхности А Æ0,02 мм.
Допуск перпендикулярности осп выступа относительно основания 0,l мм.
Допуск перпендикулярности оси выступа в поперечном направлении 0,2 мм, в продольном направлении 0,1 мм. База - основание
Допуск перпендикулярности оси отверстия относительно поверхности Æ 0,1 мм (допуск зависимый).
8. Допуск наклона Допуск наклона поверхности относительно поверхности А 0,08 мм.
Допуск наклона оси отверстия относительно поверхности А 0,08 мм.
9. Допуск соосности Допуск соосности отверстия относительно отверстия Æ 0,08 мм.
Допуск соосности двух отверстий относительно их общей оси Æ 0,01 мм (допуск зависимый).
10. Допуск симметричности Допуск симметричности паза Т 0,05 мм. База - плоскость симметрии поверхностей А
Допуск симметричности отверстия Т 0,05 мм (допуск зависимый). База - плоскость симметрии поверхности А.
Допуск симметричности осп отверстия относительно общей плоскости симметрии пазов АБ Т 0,2 мм и относительно общей плоскости симметрии пазов ВГ Т 0,1 мм.
11. Позиционный допуск Позиционный допуск оси отверстия Æ 9,06 мм.
Позиционный допуск осей отверстий Æ 0,2 мм (допуск зависимый).
Позиционный допуск осей 4-х отверстий Æ 0,1 мм (допуск зависимый). База - ось отверстия А (допуск зависимый).
Позиционный допуск 4-х отверстий Æ 0,1 мм (допуск зависимый).
Позиционный допуск 3-х резьбовых отверстий Æ 0,1 мм (допуск зависимый) на участке, расположенном вне детали и выступающем на 30 мм от поверхности.
12. Допуск пересечения осей Допуск пересечения осей отверстий Т 0,06 мм
13. Допуск радиального биения Допуск радиального биения вала относительно оси конуса 0,01 мм.
Допуск радиального биения поверхности относительно общей оси поверхностен А и Б 0,1 мм
Допуск радиального биения участка поверхности относительно оси отверстия А 0,2 мм
Допуск радиального биения отверстия 0,01 мм Первая база - поверхность Л. Вторая база - ось поверхности В. Допуск торцового биения относительно тех же баз 0,016 мм.
14. Допуск торцового биения Допуск торцового биения на диаметре 20 мм относительно оси поверхности А 0,1 мм
15. Допуск биения в заданном направлении Допуск биения конуса относительно оси отверстия А в направлении, перпендикулярном к образующей конуса 0,01 мм.
16. Допуск полного радиального биения Допуск полного радиального биения относительно общей оси поверхностен А и Б 0,1 мм.
17. Допуск полного торцового биения Допуск полного торцового биения поверхности относительно оси поверхности 0,1 мм.
18. Допуск формы заданного профиля Допуск формы заданного профиля Т 0,04 мм.
19. Допуск формы заданной поверхности Допуск формы заданной поверхности относительно поверхностей А, Б, В, Т 0,1 мм.
20. Суммарный допуск параллельности и плоскостности Суммарный допуск параллельности и плоскостности поверхности относительно основания 0,1 мм.
21. Суммарный допуск перпендикулярности и плоскостности Суммарный допуск перпендикулярности и плоскостности поверхности относительно основания 0,02 мм.
22. Суммарный допуск наклона и плоскостности Суммарный допуск наклона и плоскостности поверхности относительно основания 0,05 ми

Примечания:

1. В приведенных примерах допуски соосности, симметричности, позиционные, пересечения осей, формы заданного профиля и заданной поверхности указаны в диаметральном выражении.

Допускается указывать их в радиусном выражении, например:

В ранее выпущенной документации допуски соосности, симметричности, смещения осей от номинального расположения (позиционного допуска), обозначенные соответственно знаками или текстом в технических требованиях, следует понимать как допуски в радиусном выражении.

2. Указание допусков формы и расположения поверхностей в текстовых документах или в технических требованиях чертежа следует приводить по аналогии с текстом пояснении к условным обозначениям допусков формы и расположения, приведенным в настоящем приложении.

При этом поверхности, к которым относятся допуски формы и расположения или которые приняты за базу, следует обозначать буквами или проводить их конструкторские наименования.

Допускается вместо слов «допуск зависимый» указывать знак и вместо указаний перед числовым значением символов Æ; R; Т; Т/2 запись текстом, например, «позиционный допуск оси 0,1 мм в диаметральном выражении» или «допуск симметричности 0,12 мм в радиусном выражении».

3. Во вновь разрабатываемой документации запись в технических требованиях о допусках овальности, конусообразности, бочкообразности и седлообразности должна быть, например, следующей: «Допуск овальности поверхности А 0,2 мм (полуразность диаметров).

В технической документации, разработанной до 01.01.80, предельные значения овальности, конусообразности, бочкообразности и седлообразности определяют как разность наибольшего и наименьшего диаметров.

(Измененная редакция, Изм. № 1).

 

 

Рабочее место оператора представляет собой отдельный производственный участок, закрепленный за одним рабочим или за бригадой рабочих. Рациональная организация рабочего места повышает эффективность использования станков с ЧПУ и способствует выполнению работы на них c наименьшими затратами труда. Основными факторами, влияющими на организацию рабочего места, являются технологический процесс и организация производства, а также система обеспечения рабочего места заготовками, технической документацией, инструментом, приспособлениями и ремонтообслуживанием оборудования.

Прежде всего рабочее место должно обеспечиваться необходимым количеством заготовок, инструмента и приспособлений для бесперебойной работы в течение смены. Площадь рабочего места должна быть такой, чтобы, с одной стороны, она гарантировала оптимальные условия труда, а с другой - была бы экономически целесообразной.

Одной из наиболее важных характеристик рабочего места является эффективность его внутренней планировки.

На рис. 7.1 показаны рациональные планировки рабочих мест операторов-станочников, обслуживающих токарные (рис. 7.1, а), фрезерные (рис. 7.1, б), сверлильные (рис. 7.1, в) и расточные (рис. 7.1, г) станки с ЧПУ. Планировки разработаны для условий мелкосерийного производства, когда на рабочем месте могут выполняться операции по обработке большой номенклатуры различных заготовок. При этом предполагается, что оператор обслуживает только один станок.

Яндекс.ДиректВсе объявленияФрезерные станки с ЧПУ POLYAX 3D/2D Рабочее поле 1500х2500x250мм. По дереву,цветным металлам. От 445 000рАдрес и телефон polyax.ru

Рис. 7.1. Рациональные планировки рабочих мест операторов станков с ЧПУ:

а - для токарного станка мод. 16К20Ф3; б - для фрезерного станка мод. 6Р13Ф3; в - для сверлильного станка мод. 2Р135Ф2; г - для расточного станка мод. 2А622Ф2; 1 - станок; 2 - устройство ЧПУ; 3 - гидростанция; 4 - решетка под ноги; 5 - тара или стеллаж-подставка; 6 - тумбочка инструментальная; 7 - электрошкаф; в -стеллаж для приспособлений; 9 - ящик для стружки; 10, - стул подъемно-поворотный; 11 - защитный экран.

 

1. Базирование деталей (заготовок) при обработке.

 

При разработке технологического процесса механической обработки важным является правильное базирование заготовки.

Под термином база понимают совокупность поверхностей, линий или точек, по отношению к которым ориентируются другие поверхности данной детали или другие детали изделия при их обработке, измерении или сборке.

Базированием заготовки называют установку и закрепление ее в определенном положении относительно станка и режущего инструмента. От правильности расположения заготовки относительно станка и режущего инструмента будет зависеть точность размера, точность геометрической формы и взаимного расположения обработанных поверхностей.

Различают базы конструкторские и технологические.

Конструкторскими базами называют поверхности, линии и точки на чертежах, от которых проставлены размеры.

Поверхности, используемые в технологическом процессе механической обработки и сборки, называют технологическими базами. Они подразделяются на установочные, сборочные и измерительные.

^ Установочными базами называют поверхности обрабатываемой заготовки, используемые при установке ее в приспособлении или непосредственно на станке. В первой стадии механической обработки, когда ни одна поверхность заготовки еще не обработана, ее устанавливают на необработанные поверхности, которые называют черновыми базами. Обработанные поверхности, используемые для закрепления заготовки на станке при выполнении последующих операций, называют чистовыми базами.

^ Измерительными базами называют те поверхности или сочетание поверхностей, линий и точек, от которых производят отсчет размеров при измерении деталей.

^ Основное правило при выборе баз.
При выборе и назначении технологических баз необходимо соблюдать

следующие основные правила.

I. Поверхность, принимаемая за технологическую базу, должна по

возможности являться одновременно и конструкторской (основной или

вспомогательной) базой, т.е. технологическая база должна совпадать с

конструкторской (правило совмещения баз).

Конструкторской называется база, используемая для определения положения

детали в изделия. В случае невозможности определения конструкторской базы

по этому признаку (т.е. при отсутствии сборочного чертежа) за

конструкторскую базу следует принимать поверхность, определяемую размером

до обрабатываемой поверхности.

В приведенных на рис.1 примерах поверхности, обозначенные знаком " V ",

являются либо конструкторскими базами, либо измерительными. При

использовании их в качестве технологических баз они обеспечивают отсутствие

погрешности базирования. При несовпадении технологической базы с

конструкторской и измерительной появляется погрешность базирования,

величину которой необходимо определять расчетом.

Рис.1
2. Для определения точности взаиморасположения поверхностей детали,

подлежащих обработке в разных операциях технологического процесса,

желательно сохранять в них постоянство установочной технологической базы

(рис.2). Это правило называется правилом постоянства баз.

3. В качестве установочной технологической базы применять по возможности

наиболее протяженные и наиболее точно и чисто обработанные поверхности.

4. Необработанные поверхности применять в качестве технологических

установочных (черновых) баз только для первых операций технологического

процесса.

5. При использовании черновых баз не допускать на их поверхности наличия

следов литников, выпоров, облоя и других следов.

6. При выборе черновых баз для первой операции желательно использование

таких поверхностей заготовки, которые будут оставаться необработанными

 
 
 
 
 
 
 
 
 
 

 



Поделиться:


Последнее изменение этой страницы: 2017-01-25; просмотров: 505; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.110.119 (0.05 с.)