Фториды полости рта и их роль в минерализации твердых тканей зуба. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Фториды полости рта и их роль в минерализации твердых тканей зуба.



25. ГАП. Изоморфные замещения в ГАП. Минеральные компоненты эмали

Они представлены в виде соединений, имеющих кристаллическую решетку

A (BO) K

A = Ca, Ba, кадмий, стронций

В = РО, Si, As, CO.

K = OH, Br, J, Cl.

1) гидроксиапатит – Са (РО) (ОН) в эмали зуба 75% ГАП – самый распространенный в минерализованных тканях

2) карбонатный апатит – КАП – 19% Са (РО) СО – мягкий, легко растворимый в слабых кислотах, целочах, легко разрушается

3) хлорапатит Са (РО) Сl 4,4% мягкий

4) стронцевый апатит (САП) Са Sr (PO) - 0,9% не распространен в минеральных тканях и распространен в неживой природе.

собенности строения кристалла. Наиболее типичной является гексогенальная форма ГАП, но может быть кристаллы с палочковидной, игольчатой, ромбовидной. Все они упорядочены, определенной формы, имеют упорядоченные эмаль призмы – является структурной единицей эмали. Наличие вакантных мест в кристаллической решетке является важным фактором в активации изоморфных замещений внутри кристалла. Проникновение ионов в кристалл зависит от R иона и уровня Е, которой он обладает, поэтому легче проникают ионы Н, и близкие по строению к иону Н. Стадия протекает дни, недели, месяцы. Состав кристалла ГАП и свойства их постоянно изменяются и зависят от ионного состава жидкости, которая омывает кристалл и состава гидратной оболочки. Эти св-ва кристаллов позволяют целенаправленно изменять состав твердых тканей зуба, под действием реминерализующих растворов с целью профилактики или лечения кариеса.

3 стадии:1) ионный обмен между раствором, который омывает кристалл – это слюна и зубдесневая жидкость с его гидратной оболочкой. В нее поступают ионы, нейтрализующие заряд кристалла Са, Sr, Co, PО, цитрат. Одни ионы могут накапливаться и также легко покидать, не проникая внутрь кристалла – это ионы К и Cl, другие ионы проникают в поверхностный слой кристалла – это ионы Na и F. Стадия происходит быстро в течение нескольких минут.

2) это ионный обмен между гидратной оболочкой и поверхностью кристалла, происходит отрыв иона от поверхности кристалла и замена их на другие ионы из гидратной оболочки. В результате уменьшается или нейтралезуется поверхностный заряд кристалла и он приобретает устойчивость. Более длительная, чем 1 стадия. В течение нескольких часов. Проникают Ca, F, Co,Sr, Na, P.

3) Проникновение ионов с поверхности внутрь кристалла – называется внутрикристаллический обмен, происходит очень медленно и по мере проникновения иона скорость этой стадии замедляется. Такой способностью обладают ионы Ра, F, Са, Sr.

26. характеристика буферных систем РЖ. Поскольку смешанная слюна представляет собой взвесь клеток жидкой среды, которая омывает зубной ряд, то кислотно-основное состояние полости рта определяется скоростью слюноотделения, совместным действием буферных систем слюны, а также метаболитами микроорганизмов, количеством зубов и частотой их расположения в зубной дуге. Значение рН смешанной слюны в норме колеблется от 6,5 до 7,4 со средней величиной около 7,0.

Буферными системами называют такие растворы, которые способны сохранять постоянство рН-среды при их разбавлении или добав- лении небольшого количества кислот, оснований. Уменьшение рН называют ацидозом, а увеличение - алкалозом.

Смешанная слюна содержит три буферных системы: гидрокарбонатную, фосфатную и белковую. Вместе эти буферные системы формируют первую линию защиты против кислотных или щелочных воздействий на ткани полости рта. Все буферные системы полости рта имеют различные пределы ёмкости: фосфатная наиболее активна при рН 6,8-7,0, гидрокарбонатная при рН 6,1-6,3, а белковая обеспечивает буферную ёмкость при различных значениях рН.

 

Основной буферной системой слюны является гидрокарбонатная, которая представляет собой сопряжённую кислотно-основную пару, состоящую из молекулы H2CO3 - донора протона, и гидрокарбонатиона НСО3 - акцептора протона.

Во время приёма пищи, жевания буферная ёмкость гидрокарбонатной системы обеспечивается на основе равновесия: СО2 + Н2О = НСО3 + Н+. Жевание сопровождается повышением слюноотделения, что приводит к уве-

личению концентрации гидрокарбоната в слюне. При добавлении кислоты фаза перехода СО2 из растворённого газа в свободный (летучий) газ значительно возрастает и увеличивает эффективность нейтрализующих реакций. В силу того, что конечные продукты реакций не накапливаются, происходит полное удаление кислот. Этот феномен получил название «буфер-фаза».

При длительном стоянии слюны происходит потеря СО2. Э та особенность гидрокарбонатной системы называется стадией буферизации, и она продолжается до тех пор, пока не израсходуется больше 50% гидрокарбоната.

После воздействия кислот и щелочей H2CO3 быстро распадается до CO2 и H2O. Диссоциация молекул угольной кислоты происходит в две стадии:

H2CO3 + H2O <---> HCO3- + H3O+ HCO3- + H2O <---> CO32- + H3O+

Фосфатная буферная система слюны представляет собой сопряжён- ную кислотно-основную пару, состоящую из иона дигидрофосфата H2PO2- (донор протона) и иона моногидрофосфата - HPO43- (а к ц е п т о р протона). Фосфатная система менее эффективна по сравнению с гидро- карбонатной и не имеет эффекта «буфер-фазы». Концентрация HPO43- в слюне не определяется скоростью слюноотделения, поэтому ёмкость фосфатной буферной системы не зависит от приёма пищи или жевания.

Реакции компонентов фосфатной буферной системы с кислотами и основаниями происходят следующим образом:

• При добавлении кислоты: HPO43- + H3O+ <---> H2PO2- + H2O

 

• При добавлении основания: H2PO2- + ОН- <---> HPO43- + H2O

Белковая буферная система имеет сродство к биологическим процессам, протекающим в полости рта. Она представлена анионными и катионными белками, которые хорошо растворимы в воде. Эта буферная система включает более 944 различных белков, но до конца не известно, какие именно белки участвуют в регуляции кислотно-основного равновесия. Карбоксильные группы радикалов аспартата, глутамата, а также радикалы цистеина, серина и тирозина являются донорами протонов:

R-CH2-COOH <---> R-CH2-COO- + H+ (Аспартат);

R-(CH2)2-COOH <---> R-CH2-COO- + H+ (Глутамат).

 

Аминогруппы радикалов аминокислот гистидина, лизина, аргинина способны присоединять протоны:

 

R-(CH2)4-NH2 + H+ <---> R-(CH2)4 (-N H+) (Лизин)

 

R-(CH2)3-NH-C (=NH)-NH2) + H+ <---> (R-(CH2)3-NH-C (=NH2+)-NH)

 

(Аргинин)

В связи с этим белковая буферная система эффективна как при pH 8,1, так и pH 5,1.

рН слюны «покоя» отличается от рН стимулированной слюны. Так, нестимулированный секрет из паротидной и поднижнечелюстной слюнных желёз имеет умеренно кислый рН (5,8), который увеличивается до 7,4 при последующей стимуляция. Этот сдвиг совпадает с увеличением в слюне количества НСО3- до 60 ммоль/л.

Благодаря буферным системам у практически здоровых людей уровень pH смешанной слюны восстанавливается после еды до исход- ного значения в течение нескольких минут. При несостоятельности буферных систем pH смешанной слюны снижается, что сопровождается увеличением скорости деминерализации эмали и инициирует развитие кариозного процесса.

На pH слюны в большой степени влияет характер пищи: при приё- ме апельсинового сока, кофе с сахаром, клубничного йогурта pH снижается до 3,8-5,5, в то время как употребление пива, кофе без сахара практически не вызывают сдвигов pH слюны.



Поделиться:


Последнее изменение этой страницы: 2017-01-24; просмотров: 145; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.36.203 (0.008 с.)