Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Электромагнитные поля. Воздействие на организм человека. Способы и средства защиты.Содержание книги
Поиск на нашем сайте
В зависимости от энергии спектр электромагнитных колебаний подразделяют на область неионизирующих и ионизирующих излучений. В гигиенической практике к неионизирующим излучениям относят также электрические и магнитные поля. Длительное действие на человека электромагнитных полей промышленной частоты (50 Гц) приводит к расстройствам, которые субъективно выражаются жалобами на головную боль в височной и затылочной области, вялость, расстройство сна, снижение памяти, повышенную раздражительность, апатию, боли в сердце, нарушение ритма сердечных сокращений. Могут наблюдаться функциональные нарушения в ЦНС и сердечно-сосудистой системе, а также изменения в составе крови. Поэтому необходимо ограничить время пребывания человека в зоне действия электромагнитных полей, создаваемых токами промышленной частоты напряжением выше 400 кВ. Электрические поля. Пребывание в электрическом поле частотой 50 Гц, напряженностью до 5 кВ/м допускается в течение всего рабочего дня. Воздействие электростатического поля на человека связано с протеканием через него слабого тока (несколько микроампер). При этом электротравм никогда не наблюдается. Однако вследствие рефлекторной реакции на ток (резкое отстранение от заряженного тела) возможна механическая травма от удара о рядом расположенные элементы конструкций, падение с высоты и т.д. К электростатическому полю наиболее чувствительны ЦНС, сердечно-сосудистая система, анализаторы. Люди, работающие в зоне действия электростатических полей, жалуются на раздражительность, головную боль, нарушение сна и др. Характерны своеобразные «фобии», обусловленные страхом ожидаемого разряда, неустойчивость пульса и артериального давления. Магнитные поля могут быть постоянными, импульсными, переменными. Степень воздействия магнитного поля на рабочих зависит от максимальной напряженнояти его в рабочей зоне. Каких-либо субъективных воздействий постоянные магнитные поля не вызывают. При действии переменных магнитных полей наблюдаются характерные зрительные ощущения, фосфены (зрительное ощущение цветовых пятен, возникающее у человека без воздействия света на глаз, при механических, химических и электрических раздражениях сетчатки или зрительных участков коры головного мозга), которые исчезают в момент прекращения воздействия. В условиях хронического воздействия магнитных полей, превышающих предельно допустимые уровни, могут наблюдаться нарушения функций нервной, сердечно-сосудистой и дыхательной систем, пищеварительного тракта, изменения в крови. При локальном воздействии (чаще всего на руки) появляется ощущение зуда, бледность и синюшность кожных покровов, отечность и уплотнение, а иногда ороговение кожи. Большую часть неионизирующих электромагнитных излучений (ЭМИ) составляют радиоволны (3 Гц…3000 ГГц), меньшую часть – колебания оптического диапазона: инфракрасное (ИК), видимое, ультрафиолетовое (УФ) излучения. В зависимости от частоты электромагнитного излучения ткани организма проявляют различные электрические свойства и ведут себя как проводник или как диэлектрик. В зависимости от места и условий воздействия ЭМИ радиочастот различают четыре вида облучения: 1. профессиональное 2. непрофессиональное 3. облучение в быту 4. облучение в лечебных целях По характеру облучения: 1. общее 2. местное Степень и характер воздействия ЭМИ радиочастот на организм определяются плотностью потока энергии, частотой излучения, продолжительностью воздействия, режимом облучения (непрерывный, прерывистый, импульсный), размером облучаемой поверхности, индивидуальными особенностями организма, наличием сопутствующих факторов (температура воздуха свыше , присутствие рентгеновского излучения). Биологические эффекты от воздействия ЭМИ могут проявляться в различной форме: от незначительных сдвигов в некоторых системах организма до серьезных нарушений в целом. Следствием поглощения энергии ЭМИ организмом человека является тепловой эффект. При длительном действии ЭМИ возможны расстройства в ЦНС, а также нарушение обменных процессов и изменение состава крови. Поэтому могут появляться головные боли, изменения артериального давления, снижение пульса, нервно-психические расстройства, быстрое развитие утомления. Могут наблюдаться выпадение волос, ломкость ногтей, снижение массы. На ранней стадии нарушения носят обратимый характер, но в дальнейшем происходит стойкое снижение работоспособности. Инфракрасное излучение (ИК) – излучение, энергия которого при поглощении веществом вызывает тепловой эффект. Наиболее поражаемые у человека органы – кожный покров и органы зрения. При остром повреждении кожи возможны ожоги, резкое расширение капилляров, усиление пигментации кожи, при хроническом облучении изменение пигментации может быть стойким, красный цвет лица у сталеваров, стеклодувов. К острым нарушениям органа зрения относится ожог и помутнение роговицы и хрусталика. Видимое (световое) излучение. При высоких уровнях энергии тоже может представлять опасность для кожи и глаз. Пульсации яркого света вызывают сужение полей зрения, ухудшают зрение, общую работоспособность, оказывают влияние на ЦНС. Световой импульс большой энергии приводит к ожогам открытых участков тела, временному ослеплению или ожогам сетчатки глаз. Ультрафиолетовое излучение (УФИ) наряду с благотворным стимулирующим действием на организм может оказывать и негативное действие. Так поражение глаз (электросварка) проявляется ощущением песка в глазах, светобоязнью, слезотечением. Воздействие УФИ на кожу может протекать в форме острого воспаления кожи с покраснением, иногда отеком и образованием пузырей. Длительное воздействие приводит к старению кожи, развитию рака кожи. Ионизирующие излучения. В организме человека ионизирующие излучения вызывают цепочку обратимых и необратимых процессов. Воздействуя на молекулы белка, ферментов и других элементов биологической ткани, они вызывают в них химические реакции, что приводит к нарушению биохимических процессов в организме. В процесс вовлекаются сотни и тысячи молекул, не затронутых излучением. В результате нарушаются обменные процессы, замедляется и прекращается рост тканей, возникают новые химические соединения, не свойственные организму. Для защиты от тепловых, электромагнитных и ионизирующих излучений служит принцип экранирования. Для защиты от тепловых излучений служат экраны отражения, поглощения и теплоотвода. Отражающие экраны обычно изготовляют из светлых материалов: алюминия, белой жести, оцинкованного железа. Теплоотводящие экраны представляют собой конструкции со змеевиком, по которому проходит проточная вода. Теплопоглощающие экраны изготавливают из материалов с большой степенью черноты. Как средства индивидуальной защиты применяется теплозащитная одежда. Для защиты от статического электричества используют методы, исключающие или уменьшающие образование зарядов статического электричества, и методы, устраняющие заряды. Метод, исключающий или уменьшающий образование зарядов. Этот метод наиболее эффективен и осуществляется за счет подбора пар материалов элементов машин, которые взаимодействуют между собой с трением. Для этого используют электростатический ряд, в котором электроизоляционный материал приобретает положительный заряд при взаимодействии с электроизоляционным материалом, находящимся справа от него, и отрицательный, если материал находится слева от него. Чем дальше друг от друга располагаются исходные материалы, тем интенсивнее происходит образование зарядов статического электричества при трении между ними. Поэтому при создании машин необходимо материалы взаимодействующих между собой элементов машин выбирать одинаковыми или максимально близко расположенными в элктростатическом ряду. Например, пневмотранспортировку полиэтиленового порошка желательно осуществлять по полиэтиленовым трубам. Другим способом нейтрализации зарядов статического электричества является смешивание материалов, которые при взаимодействии с элементами оборудования заряжаются разноименно. В итоге смесь этих материалов приобретает нулевой заряд. Уменьшению интенсивности образования электростатических зарядов способствует снижение силы и скорости трения, шероховатости взаимодействующих поверхностей. С этой целью при транспортировании по трубопроводам огнеопасных жидкостей с большим удельным электрическим сопротивлением (бензина, керосина) регламентируют предельные скорости перекачки. Налив таких жидкостей в резервуары свободно падающей на поверхность жидкости струей не допускается: сливной шланг заглубляют под поверхность жидкости. Метод устранения зарядов. Основным приемом для устранения зарядов является заземление электропроводных частей технологического оборудования для отвода в землю образующихся зарядов статического электричества. Эффективным способом снижения электризации материалов и оборудования на производстве является применение нейтрализаторов статического электричества, создающих вблизи наэлектролизованных поверхностей положительные и отрицательные ионы. Ионы, несущие заряд, противоположный заряду поверхности, притягиваются к ней, и нейтрализуют ее заряд. Для защиты от электромагнитных излучений применяют следующие методы и средства: 1. уменьшение мощности излучения непосредственно в его источнике, в частности за счет применения поглотителей электромагнитной энергии; 2. увеличение расстояния от источника излучения; 3. подъем излучателей и диаграмм направленности излучения; 4. блокирование излучения или снижение его мощности для вращающихся антенн в секторе, где находится защищаемый объект; 5. экранирование излучения; 6. применение средств индивидуальной защиты. Наиболее широкое применение получили экраны. Экранируют либо источники излучения, либо зоны, где может находиться человек. Экраны могут быть замкнутыми (полностью изолирующими излучаемое устройство или защищаемый объект) или незамкнутыми, различной формы и размеров, выполненными из сплошных, перфорированных, сотовых или сетчатых материалов. Экраны изготавливают из материалов с высокой электрической проводимостью: медь, алюминий, латунь в виде листов толщиной не менее 0,5 мм или сетки с ячейками не более 4х4 мм. Электромагнитное поле ослабляется металлическим экраном при создании в его толще поля противоположного направления. К средствам индивидуальной защиты от электромагнитных излучений относят радиозащитные костюмы, комбинезоны, фартуки, очки, маски и т.д. Радиозащитные костюмы, комбинезоны, фартуки в общем случае шьются из хлопчатобумажного материала, вытканного вместе с микропроводом, выполняющим роль сетчатого экрана. Шлем и бахилы костюма сделаны из той же ткани, но в шлем спереди вшиты очки и специальная проволочная сетка для облегчения дыхания. Для защиты глаз применяют очки специальных марок с металлизированными диоксидом олова стеклами. Для защиты от ионизирующих излучений необходимо увеличить расстояние от источника излучения, экранировать излучения с помощью экранов, применять средства индивидуальной защиты. Экраны позволяют снизить облучение до любого заданного уровня. Материал, применяемый для защитного экранирования, и толщина экрана зависят от природы излучения. От альфа-излучения достаточно экранов из стекла, плексигласа и фольги любой толщины. Для защиты от бета лучей используют свинец, вольфрам, бетон, сталь.
Электрический ток.
Действие электрического тока на живую ткань носит разносторонний и своеобразный характер. Проходя через тело человека, электроток производит термическое, электролитическое, механическое и биологическое действие. Термическое действие тока проявляется ожогами отдельных участков тела, нагревом до высокой температуры органов, расположенных на пути тока, вызывая в них значительные функциональные расстройства. Электролитическое действие тока выражается в разложении различных жидкостей организма (крови, лимфы) на ионы и нарушении их физико-химического состава и свойств. Механическое действие тока приводит к расслоению, разрыву тканей организма в результате электродинамического эффекта, а также мгновенного взрывоподобного образования пара из тканевой жидкости и крови. Биологическое действие тока проявляется раздражением и возбуждением живых тканей организма, судорожным сокращением мышц, а также нарушением внутренних биологических процессов. Электротравмы условно делятся на местные и общие. К общим относят электрический удар, при котором процесс возбуждения различных групп мышц может привести к судорогам, остановке дыхания и сердечной деятельности. К местным относя ожоги, металлизацию кожи, механические повреждения, электрические знаки, электроофтальмию. Металлизация кожи связана с проникновением в нее мельчайших частиц металла при его расплавлении под влиянием электрической дуги. Электрические знаки возникают на коже. Это уплотненные участки серого или бледно-желтого цвета, они безболезненны и быстро проходят. Электроофтальмия – воспаление наружных слизистых оболочек глаз вследствие мощного ультрафиолетового излучения электрической дуги. Возможно повреждение роговой оболочки, что особенно опасно. Исход поражения человека электротоком зависит от многих факторов: силы тока, времени прохождения его через организм, характеристики тока (переменный или постоянный), пути тока в теле человека, при переменном токе – от частоты колебаний, от наличия в помещении токопроводящего пола и пыли, повышенной влажности и температуры и др. Ток, проходящий через тело человека, зависит от напряжения прикосновения, под которым оказался пострадавший и суммарного электрического сопротивления, в которое входит сопротивление тела человека. Величина последнего определяется в основном сопротивлением рогового слоя кожи и составляет при сухой коже и отсутствии повреждений сотни тысяч Ом. Внутреннее сопротивление тела человека не превышает нескольких сот Ом и существенной роли не играет. На сопротивление организма воздействию электрического тока оказывает влияние физическое и психическое состояние человека. Нездоровье, утомление, голод, опьянение, эмоциональное возбуждение приводит к снижению сопротивления. Допустимым считается ток, при котором человек может самостоятельно освободиться от электрической цепи. Переменный ток более опасен, чем постоянный, однако при высоком напряжении (более 500 В) опаснее становится постоянный ток. Из всех возможных путей протекания тока через тело человека наиболее опасен тот, при котором поражается головной мозг, сердце и легкие. Поражение человека электрическим током возможно лишь при замыкании электрической цепи через его тело. Это происходит: 1. при двухфазном включении в сеть; 2. при однофазном включении в сеть или при контакте с токоведущими частями оборудования (клеммы, шины); 3. при контакте с нетоковедущими частями оборудования (корпус), случайно оказавшимися под напряжением из-за нарушения изоляции проводов (аварийный режим); 4. при возникновении напряжения шага. Снизить ток можно либо за счет снижения напряжения прикосновения (например, использовать защитное заземление для случая аварийного режима), либо за счет увеличения сопротивления тела человека, например при применении средств индивидуальной защиты. Напряжением шага называют напряжение между двумя точками, на которых одновременно стоит человек. Это происходит при падении оголенного провода на землю. Напряжение шага практически исчезает при расстоянии от оголенного провода более 20 м. Классификация помещений по опасности поражения током. Все помещения делятся на три класса: 1. без повышенной опасности; 2. повышенной опасности; 3. особо опасные. Помещения без повышенной опасности – это сухие, беспыльные помещения с нормальной температурой воздуха и с изолирующими (например, деревянными) полами. Помещения повышенной опасности характеризуются наличием одного из пяти условий, создающих повышенную опасность: 1. сырости, когда относительная влажность воздуха больше 70%; 2. высокой температуры, свыше 30 градусов тепла; 3. токопроводящей пыли; 4. токопроводящих полов – металлических, земляных, бетонных и т.п.; 5. возможности одновременного прикосновения человека к имеющим соединение с землей металлоконструкций зданий, механизмов и т.п. с одной стороны и металлическим корпусам электрооборудования – с другой. Помещения особо опасные характеризуются наличием одного из следующих трех условий, создающих особую опасность: 1. особой сырости, когда относительная влажность близка к 100% (внутри покрыты влагой); 2. химически активной или органической среды (агрессивные пары, газы, жидкости, плесень) действующие разрушающе на изоляцию и токоведущие части; 3. одновременного наличия двух или более условий, свойственных помещениям с повышенной опасностью. Особо опасными помещениями является большая часть производственных помещений. Для защиты от поражения электрическим током применяются следующие технические меры: 1. малые напряжения; 2. электрическое разделение сети; 3. контроль и профилактика повреждения изоляции; 4. защита от случайного прикосновения к токоведущим частям; 5. защитное заземление; 6. зануление; 7. защитное отключение; 8. применение индивидуальных защитных средств. Применение малых напряжений. Малое напряжение – это напряжение не более 42 В, применяемое в целях уменьшения опасности поражения человека электрическим током. Наибольшая степень безопасности достигается при напряжениях до 10 В. На практике применение очень малых напряжений ограничено шахтерскими лампами (2,5 В) и некоторыми бытовыми приборами (карманные фонари, игрушки и т.п.). На производстве применяют напряжения 12 и 36 В. Однако, эти напряжения не обеспечивают полной безопасности, а лишь существенно снижают опасность поражения электрическим током. Электрическое разделение сети. Разветвленная электрическая сеть большой протяженности имеет значительную электрическую емкость. В этом случае даже прикосновение к одной фазе является очень опасным. Поэтому сеть через разделительные трансформаторы разбивают на ряд небольших сетей, что снижает опасность поражения. Защита от прикосновения к токоведущим частям установок. Для исключения опасности прикосновения к токоведущим частям необходимо обеспечить их недоступность. Это достигается посредством ограждения и расположения токоведущих частей на недоступной высоте или в недоступном месте. Защитное заземление – преднамеренное электрическое соединение с землей нетоковедущих частей электроустановок, которые могут оказаться под напряжением. Зануление – преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей установок, которые могут оказаться под напряжением. Устройства защитного отключения – это быстродействующая защита, обеспечивающая автоматическое отключение электроустановки при возникновении опасности поражения человека электротоком. Данные устройства должны обеспечивать отключение неисправной электроустановки за время не более 0,2 сек. К средствам индивидуальной защиты от поражения электротоком относятся: изолирующие штанги, изолирующие электроизмерительные клещи, диэлектрические перчатки, слесарно-монтажный инструмент с изолированными рукоятками, указатели напряжения, диэлектрические галоши, коврики, изолирующие подставки. Средства индивидуальной защиты должны иметь маркировку с указанием напряжения, на которое они рассчитаны, их изолирующие свойства подлежат периодической проверке в установленные правилами техники безопасности сроки.
|
||||
Последнее изменение этой страницы: 2017-01-24; просмотров: 128; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.205.149 (0.011 с.) |