ТОП 10:

Описание математических моделей прогнозирования опасных факторов пожара



Современные научные методы прогнозирования ОФП основываются на математических моделях пожара. Математическая модель пожара описывает в самом общем виде изменение параметров состояния среды в помещении с течением времени, а также параметров состояния ограждающих конструкций этого помещения и различных элементов (технологического) оборудования.

Основные уравнения, из которых состоит математическая модель пожара, вытекают из фундаментальных законов природы: первого закона термодинамики и закона сохранения массы. Эти уравнения отражают и увязывают всю совокупность взаимосвязанных и взаимообусловленных процессов, присущих пожару, таких как тепловыделение в результате горения, дымовыделение в пламенной зоне, изменение оптических свойств газовой среды, выделение и распространение токсичных газов, газообмен помещения с окружающей средой и со смежными помещениями, теплообмен и нагревание ограждающих конструкций, снижение концентрации кислорода в помещении.

Методы прогнозирования ОФП различают в зависимости от вида математической модели пожара. Математические модели пожара в помещении условно делятся на три вида: интегральные, зонные и полевые (дифференциальные).

Чтобы сделать научно обоснованный прогноз, необходимо обратиться к той или иной модели пожара. Выбор модели определяется целью (задачами) прогноза (исследования) для заданных условий однозначности (характеристики помещения, горючего материала и т.д.) путем решения системы дифференциальных уравнений, которые составляют основу выбранной математической модели.

Интегральная модель пожара позволяет получить информацию (т.е. позволяет сделать прогноз) о среднеобъемных значениях параметров состояния среды в помещении для любого момента развития пожара. При этом для того, чтобы сопоставлять (соотносить) средние (т.е. среднеобъемные) параметры среды с их предельными значениями в рабочей зоне, используются формулы, полученные на основе экспериментальных исследований пространственного распределения температур, концентраций продуктов горения, оптической плотности дыма и т.д.

Однако даже при использовании интегральной модели пожара получить аналитическое решение системы обыкновенных дифференциальных уравнений в общем случае невозможно. Реализация выбранного метода прогнозирования возможна только путем ее численного решения при помощи компьютерного моделирования.

Основное преимущество интегральной модели: быстрый и низкотрудоемкий инженерный расчет динамики опасных факторов пожара.

Основные недостатки:

- область корректного применения интегральной модели (по объемам и геометрии помещений, расположению горючего материала и т.д.) является нерешенной проблемой;

- необходимость использования дополнительной экспериментальной информации или моделей более высокого уровня (зонных или полевых) для получения распределения параметров тепломассообмена по объему помещения;

- величины ОФП на уровне рабочей зоны не зависят от вида, свойств, места расположения горючего материала и геометрии помещения.

Зонные математические модели в чаще всего используются для исследования динамики опасных факторов пожара в начальной стадии пожара. В начальной стадии распределение параметров состояния газовой среды по объему помещения характеризуется большой неоднородностью (неравномерностью). В этот период (отрезок) времени пространство внутри помещения можно условно поделить на ряд характерных зон с существенно различающимися температурами и составами газовых сред. Границы этих зон по мере развития пожара не остаются неизменными и неподвижными. В течение времени геометрическая конфигурация зон меняется и сглаживается контрастное различие параметров состояния газа в этих зонах. В принципе, пространство внутри помещения можно разбить на любое число зон. В этой главе рассмотрим простейшую зонную модель пожара, которая применима при условиях, когда размеры очага горения значительно меньше размеров помещения.

Основные преимущества:

- быстрый и низкотрудоемкий инженерный расчет динамики опасных факторов пожара;

- используются закономерности теплового и гидродинамического взаимодействия струйного течения со строительными конструкциями с условным разбиением на характерные области (критическая точка, область ускоренного течения, переходная область и область автомодельного течения).

Основные недостатки:

- область корректного применения зонной модели (по объемам и геометрии помещений, расположению горючего материала и т.д.) является нерешенной проблемой;

- необходимость использования дополнительной экспериментальной информации или модели более высокого уровня (полевой) для получения распределения параметров тепломассообмена по объемам зон помещения;

- в случае сложной термогазодинамической картины пожара основные допущения зонной модели (равномерно прогретый припотолочный слой и т.д.) не соответствуют реальным условиям.

Дифференциальное (полевое) моделирование основано на описании состояния газовой среды для элементарных объёмов, на которые разбивается изучаемая область пространства. Это наиболее сложная в математическом отношении модель пожара. Она представлена системой дифференциальных уравнений в частных производных, описывающих пространственно-временное распределение температур, скоростей и концентраций компонентов газовой среды (кислорода, продуктов горения и т.д.) в помещении, давлений и плотностей.Дифференциальное моделирование позволяет получить локальные значения термодинамических параметров пожара (плотность, температуру газовой среды, скорость движения газа, концентрации компонентов газовой среды, оптическую плотность дыма – натуральный показатель ослабления света в дисперсной среде), где независимыми аргументами являются время, и координаты конкретного элементарного объёма пространства в помещении. Промежуточное место в математическом моделировании пожаров занимают зонные модели. Они основаны на применении интегрального метода моделирования – исследуемый объём разбивается на зоны. Зоны выбираются так, чтобы для каждой из них газовую среду можно было описать с достаточной степенью достоверности усреднёнными параметрами.

Основным их достоинством является то, что искомыми параметрами являются поля температур, скоростей, давлений, концентраций компонентов газовой среды и частиц дыма по всему объему помещения.

Недостаток модели состоит в том, что они состоят из системы трех- или двумерных нестационарных дифференциальных уравнений в частных производных [3].

В данной курсовой работе мы используем интегральную модель пожара, так как она позволяет получить информацию, т.е. сделать прогноз о средних значениях параметров состояния среды в помещении для любого момента развития пожара. При этом для того, чтобы сопоставлять средние (т.е. среднеобъемные) параметры среды с их предельными значениями в рабочей зоне, используются формулы, полученные на основе экспериментальных исследований пространственного распределения температур, концентраций продуктов горения, оптической плотности дыма.


Характеристика объекта







Последнее изменение этой страницы: 2017-01-20; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.235.172.213 (0.008 с.)