Комплексне число як точка площини 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Комплексне число як точка площини



 

У вибраній прямокутній системі координат число зображається точкою (рис.1.1). Навпаки, якщо задана точка , то їй співставляється к.ч. . Таким чином, між множиною к.ч. і множиною точок площини (з заданою прямокутною системою координат) встановлюється взаємно однозначна відповідність.

Рис.1.1.

Очевидно, що дійсні числа зображуються точками на осі , а чисто уявні - на осі ; з цієї причини називають дійсною, а – уявною віссю; площину називають комплексною площиною, а к.ч. - точками цієї площини.

Приклади. Знайти множину к.ч., що задовольняють умову:

;

.

Розв’язання.

1) Нехай . Умову перепишемо в рівносильній формі:

Відповідь: множина чисел пряма

2) Якщо , то,

, отже,

Відповідь: множина чисел - півплощина, що розміщена нижче прямої .

Побудувати на площині ХОУ к.ч., записати їх дійсну та уявну частину. Обчислити модулі к.ч.

1. . 2. . 3.

Відповіді. 1.

2. .

3. .

 

Коло, круг, кільце

Нехай дано числа

Рівнянню задовольняють всі числа (і тільки вони), що розміщені на колі радіуса з центром у точці . Дійсно, якщо , то .

Очевидно, що нерівності і задають відповідно круг і кільце. На рис. 1.2 зображено кільце з центром у точці .

Звернемо увагу на вироджені випадки кільця :

(1) – круг з виключеним центром ;

(2) – зовнішність круга – круг з границею;

(3) – вся площина з виключеною точкою ;

(4) при маємо пусту множину.

 

Рис. 1.2

 

Приклад. З’ясувати, чи належить точка p до круга .

Розв’язання. Порівняємо радіус з відстанню від центра круга до точки p:

.

Відповідь: точка p розміщена поза кругом.

 

Комплексне число як вектор

 

Кожному к.ч. відповідає єдиний радіус-вектор , і навпаки, кожному радіусу-вектору відповідає єдине к.ч. (рис.1.1). Ми будемо зображати к.ч. відповідним йому радіус-вектором або довільним направленим відрізком, який при паралельному переносі збігається з . Зрозуміло, що модулі к.ч. і відповідного йому вектора рівні.

Якщо вектор зображає к.ч. , то домовимось писати .

Нехай Розглянемо паралелограм , див. рис.1.3.

 

Рис.1.3

Очевидно,

, тобто сума і різниця к.ч. відповідають сумі і різниці векторів. Таким чином, додавання і віднімання набуває простого геометричного змісту.

Множення і ділення к.ч.в геометричній формі розглядаються в §1.14.

Приклад. Доведемо нерівність , яка є узагальненням нерівності абсолютних величин дійсних чисел.

Використовуємо простий факт: сума довжин довільних двох сторін трикутника більша довжини третьої сторони. З рис. 1.3 випливає, що , тобто .

Випадок чисел, розміщених на одній прямій пропонуємо розглянути самостійно.

Приклад. Знайти суму і різницю і , де , . Переконатися за допомогою геометричної побудови, що ці вектори можна додавати і віднімати за правилом паралелограма.

Розв’язання.

.

Виконати самостійно

В умовах попереднього прикладу знайти і , де 1) , ;

2) , .

 

Кут нахилу вектора до осі

 

Розглянемо довільний ненульовий вектор (див. рис. 1.4). Величина кута j, утвореного обертанням осі в площині навколо точки до суміщення її з напрямком вектора , називається кутом нахилу цього вектора до осі ; при цьому j , якщо обертання здійснюється проти годинкової стрілки, і j при обертанні за годинковою стрілкою; якщо напрямок збігається з напрямком , то j .

Рис. 1.4

Таким чином, кут нахилу задає напрямок вектора. З рис.1.4. випливає, що додатний j+ і від’ємний j- кути визначають один і той же напрямок.

Очевидно також, якщо довільний кут j задає деякий напрямок, то такий же напрямок будуть задавати і кути , де . Отже, за кут нахилу вектора можна приймати будь-який з кутів , де ціле число.

Приклад. Легко перевірити, що кути 1350,4950,-2250,-9450 визначають один і той же напрямок (відносно осі ).

 

Аргумент комплексного числа

Нехай вектор зображає к.ч. , рис.1.5. Аргументом числа називається будь-яке із значень кута нахилу вектора до осі :

, де .

Таким чином, аргумент к.ч. набуває нескінченну множину значень. Аргумент числа не визначається.

Рис. 1.5

Найменше за абсолютною величиною значення (тобто значення з інтервалу ) називається головним значенням аргументу к.ч. і позначається , тому , .

Приклади.

1) Використовуючи рис. 1.6, легко переконатись, що

 

Рис. 1.6

2) Для довільного маємо . Пропонуємо довести цю тотожність самостійно.

 

Обчислення аргументу

Спочатку відмітимо властивість:

1) Аргумент дійсного і чисто уявного числа: якщо , то

2) Аргумент будь-якого числа можна знаходити за формулою:

(1.1)

Доведемо останню формулу у випадку, коли зображується точкою в другій чверті (рис.1.7). З . Оскільки , то

 

 
 

Рис 1.7

 

Інші випадки розміщення числа на площині розглядаються аналогічно.

Зауважимо, що вказаним способом для аргументу можна одержати формули, в яких використовуються арккотангенс, арккосинус чи арксинус.

Якщо не вимагається високої точності, то аргумент к.ч. можна знаходити графічно. З цією метою слід побудувати к.ч. на міліметровому папері і виміряти відповідний кут за допомогою транспортиру. Цей спосіб іноді використовують для грубої перевірки обчислень.

Приклад 1. Покажемо, як обчислюють аргументи чисел за допомогою формул цього пункту.

, (застосована формула (1.1), чверті);

, (формула (1.1), чверті);

, (формула (1.1), чверті);

, (формула (1.1), чверті);

Приклад 2. Достатньо встановити знаки дійсної і уявної частин к.ч., щоб перевірити рівності:

,

.

 

Tpигонометрична форма к.ч.

 

Нехай відомі модуль і аргумент к.ч. (див рис.1.5). Зауважимо, що - полярні координати точки , яка зображає число (якщо - полярна вісь).

У випадку розміщення осей і , вказаному на рис. 1.5, відомі формули переходу від полярних до прямокутних координат точки . Додамо ці рівності, помноживши другу на :

Остання форма запису комплексного числа називається тригонометричною. Як бачимо, щоб знайти тригонометричну форму, досить обчислити модуль і аргумент к.ч.

Приклади. Записати в тригонометричній формі слідуючі числа:

1) 2) 3)

Розв’язання

1)

Відповідь:

2)

Відповідь:

3)

Відповідь: .

Розглянемо алгоритм переходу від алгебраїчної до тригонометричної форми к.ч.

Нехай дано к.ч. , на прикладі . Для переходу до тригонометричної форми необхідно:

1. Побудувати на площині ХОУ к.ч. і встановити, до якої чверті належить . На даному прикладі: ІІІ четв. Див. рис.

2. Знаходимо модуль к.ч. за формулою (1)

(1)

На прикладі маємо:

3. За допомогою таблиць або мікрокалькулятора знаходимо , ураховуючи при цьому властивість

.

На прикладі: .

4. За формулою (1.1) § 1.14 знаходимо . Для даного прикладу: ІІІ чверті. Маємо:

5. Підставимо знайдені і у формулу

(2)

Для маємо:

 



Поделиться:


Последнее изменение этой страницы: 2017-01-19; просмотров: 201; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.22.119.251 (0.054 с.)