Методы синтеза гетероциклических соединений 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Методы синтеза гетероциклических соединений



Методы синтеза гетероциклических соединений

Введение

Определение. Ароматичность.

Гетероциклическими называются соединения, циклы которых построены из атомов разных элементов. Гетероатомами называются атомы, входящие в состав цикла помимо атомов углерода. Чаще всего ими являются атомы азота, серы, кислорода (N, S, O). Например:

Гетероциклические соединения делятся на ароматические и алифатические, химические свойства которых сильно отличаются. В связи с тем, что структурные формулы ароматических гетероциклов часто пишут с использованием кратных связей, необходимо уметь отличать их от алифатических. Например, пятичленные гетероциклы с одним гетероатомомизображают в виде циклов с двойными связями.

Однако известно, что соединения с двойными связями легко окисляются, восстанавливаются, присоединяют электрофильные, радикальные и нуклеофильные частицы, полимеризуются, а рассматриваемым гетероциклам, наоборот, не смотря на их ненасыщенность, в большей степени характерны реакции замещения, чем присоединения. Они значительно устойчивее к окислению и восстановлению, чем непредельные соединения, и по свойствам больше похожи на бензол, чем на алкены. В связи с этим фуран, пиррол и тиофен относят к ароматическим соединениям и их более правильно изображать в виде цикла с кружком внутри, который является символом ароматичности.

Для отнесения малознакомых гетероциклов к ароматическим или алифатическим соединениям по «классическим» структурным формулам, необходимо знать признаки «ароматичности»: арены – циклические соединения, плоские, имеют циклическую систему перекрывающихся p-орбиталей, в которой имеется определенное число электронов (4n+2) – 2, 6, 10, 14 и т.д.

Действительно, приведенные гетероциклы имеют все признаки ароматичности, если учесть, что гетероатом имеет sp2-валентное состояние.

Азолы, формулы которых приведены ниже, где Z – атом серы, кислорода или группа NH, также являются ароматическими системами.

Принято считать, что в азолах атом азота пиридиновый. Второй гетероатом (N,O,S) имеет электронную пару на p-орбитали, расположенной перпендикулярно к плоскости кольца. Тогда азолы имеют все признаки ароматичности:

- плоскую циклическую структуру, в которой циклическая система перекрывающихся p-орбиталей содержит 6 p-электронов.

- пиррольный азот - sp2-валентное состояние:

N* - 1s22(sp2)32p2 , по ячейкам:

- пиридиновый азот - sp2-валентное состояние:

N* - 1s22(sp2)42p1 , по ячейкам:

 

Аналогичным образом доказывается ароматичность других гетероциклических структур.

Важно уметь сравнивать ароматичность гетероциклов с ароматичностью бензола, что позволяет определить, насколько химические свойства гетероциклов сходны со свойствами бензола.

Чем равномернее распределены электроны по системе, тем в большей степени связи в гетероцикле приближаются к бензольным (полуторным), тем выше ароматичность и тем ярче выражена устойчивость соединения к окислителям и восстановителям, тем в меньшей степени идут реакции присоединения и полимеризации и в большей - реакции замещения. Распределение электронного облака гетероцикла зависит от гетероатома: чем выше его электроотрицательность, тем больше требуется усилий на обобществление его электронной пары, тем менее равномерно распределено электронное облако по молекуле. Электроотрицательность гетероатомов уменьшается в ряду: O>N>S>C. При этом атом серы имеет валентные электроны на 3p-орбиталях и свободные 3d-орбитали, которых нет у кислорода, азота и углерода. Это позволяет атому серы компенсировать свою электроотрицательность за счет индукционного эффекта и, в то же время, достаточно легко отдавать свои 3p-электроны на создание общего электронного облака. Следовательно, наиболее легко обобществляются электроны атомов углерода и серы, затем азота и хуже всего у атома кислорода, и ароматичность гетероциклов уменьшается в ряду: бензол (150) > тиофен (130) > пиррол (110) > фуран (80)

Азолы более ароматичны, чем пиррол и фуран. Объясняется это большей делокализацией электронной пары атомов серы, пиррольного азота или кислорода под влиянием пиридинового азота, электроотрицательность у которого выше, чем у атома углерода.

Синтез тиазола

а) Из тиоамидов и a-галогенкарбонильных соединений (метод Ганча). Реакцию ведут в органическом растворителе в присутствии основания или при нагревании. Считается, что в первую очередь алкилируется тиольная группа, что приводит к образованию моноимина вещества, напоминающего 1,4-дикарбонильное соединение. Далее классическая схема замыкания пятичленного цикла.

При соответствующих заместителях в исходных соединениях этим методом получают 2-аминотиазол (полупродукт в производстве норсульфазола, нитазола), тиамин (витамин В1) или его тиазольный фрагмент:

-б) Из a-аминотиоспиртов. В производстве лейкогена тиозолидиновый цикл получают конденсацией цистеина с альдегидом:

Вероятно, сначала образуется азометин, а затем тиоспирт присоединяется по двойной связи.

5. Синтез пиридазина (1,2-диазина) и его производных:

- Из 1,4-дикарбонильных соединений и гидразина:

Наиболее часто используют 4-кетоэфиры. Продукты циклизации легко окисляются в соответствующие ароматические соединения (можно использовать метод бромирования - дегидробромирование).

- Из непредельных или ароматических дикарбонильных соединений (в производствах азафена, сульфапиридазина, апрессина):

Образующиеся продукты существуют в виде 3-гидроксипиридазинон-6.

Выход целевого продукта в приведенных реакциях до 90%.

6. Синтезы пиримидина (1,3-диазина) и его производных

Существует множество методов синтеза производных пиримидина. Здесь приведем лишь некоторые, применяемые в производствах лекарств.

Методы получения пурина

А) Синтез гипоксантина из формиламиномалонамидамидина хлоргидрата и формамида:

Б) Синтез пуринового кольца в производствах теофиллина, теобромина и кофеина из диаминоурацила (синтез имидазольного кольца, как в случае бензимидазола):

Методы получения птеридина

А) Синтез птеридина в производстве фолиевой кислоты (синтез пиразинового кольца из 1,2-дикарбонильного соединения и 1,2-диамина):

Б) Синтез бензоптеридина в производстве рибофлавина:

Сначала реагирует вторичный амин, а затем по мере восстановления азогруппы – первичный. Реакция идет в спиртах (бутанол или бутанол-бутилацетатная смесь) в присутствии органических кислот с отгонкой воды.

Вместо аллоксана можно брать барбитуровую кислоту. Окисление барбитуровой кислоты и восстановление азосоединение идет одновременно с замыканием цикла:

После отщепления воды и протонирования азогруппы образуется электрофил, который атакует барбитуровую кислоту. После электрофильного замещения протона отщепляется анилин с образованием двойной связи.

Методы синтеза гетероциклических соединений

Введение

Определение. Ароматичность.

Гетероциклическими называются соединения, циклы которых построены из атомов разных элементов. Гетероатомами называются атомы, входящие в состав цикла помимо атомов углерода. Чаще всего ими являются атомы азота, серы, кислорода (N, S, O). Например:

Гетероциклические соединения делятся на ароматические и алифатические, химические свойства которых сильно отличаются. В связи с тем, что структурные формулы ароматических гетероциклов часто пишут с использованием кратных связей, необходимо уметь отличать их от алифатических. Например, пятичленные гетероциклы с одним гетероатомомизображают в виде циклов с двойными связями.

Однако известно, что соединения с двойными связями легко окисляются, восстанавливаются, присоединяют электрофильные, радикальные и нуклеофильные частицы, полимеризуются, а рассматриваемым гетероциклам, наоборот, не смотря на их ненасыщенность, в большей степени характерны реакции замещения, чем присоединения. Они значительно устойчивее к окислению и восстановлению, чем непредельные соединения, и по свойствам больше похожи на бензол, чем на алкены. В связи с этим фуран, пиррол и тиофен относят к ароматическим соединениям и их более правильно изображать в виде цикла с кружком внутри, который является символом ароматичности.

Для отнесения малознакомых гетероциклов к ароматическим или алифатическим соединениям по «классическим» структурным формулам, необходимо знать признаки «ароматичности»: арены – циклические соединения, плоские, имеют циклическую систему перекрывающихся p-орбиталей, в которой имеется определенное число электронов (4n+2) – 2, 6, 10, 14 и т.д.

Действительно, приведенные гетероциклы имеют все признаки ароматичности, если учесть, что гетероатом имеет sp2-валентное состояние.

Азолы, формулы которых приведены ниже, где Z – атом серы, кислорода или группа NH, также являются ароматическими системами.

Принято считать, что в азолах атом азота пиридиновый. Второй гетероатом (N,O,S) имеет электронную пару на p-орбитали, расположенной перпендикулярно к плоскости кольца. Тогда азолы имеют все признаки ароматичности:

- плоскую циклическую структуру, в которой циклическая система перекрывающихся p-орбиталей содержит 6 p-электронов.

- пиррольный азот - sp2-валентное состояние:

N* - 1s22(sp2)32p2 , по ячейкам:

- пиридиновый азот - sp2-валентное состояние:

N* - 1s22(sp2)42p1 , по ячейкам:

 

Аналогичным образом доказывается ароматичность других гетероциклических структур.

Важно уметь сравнивать ароматичность гетероциклов с ароматичностью бензола, что позволяет определить, насколько химические свойства гетероциклов сходны со свойствами бензола.

Чем равномернее распределены электроны по системе, тем в большей степени связи в гетероцикле приближаются к бензольным (полуторным), тем выше ароматичность и тем ярче выражена устойчивость соединения к окислителям и восстановителям, тем в меньшей степени идут реакции присоединения и полимеризации и в большей - реакции замещения. Распределение электронного облака гетероцикла зависит от гетероатома: чем выше его электроотрицательность, тем больше требуется усилий на обобществление его электронной пары, тем менее равномерно распределено электронное облако по молекуле. Электроотрицательность гетероатомов уменьшается в ряду: O>N>S>C. При этом атом серы имеет валентные электроны на 3p-орбиталях и свободные 3d-орбитали, которых нет у кислорода, азота и углерода. Это позволяет атому серы компенсировать свою электроотрицательность за счет индукционного эффекта и, в то же время, достаточно легко отдавать свои 3p-электроны на создание общего электронного облака. Следовательно, наиболее легко обобществляются электроны атомов углерода и серы, затем азота и хуже всего у атома кислорода, и ароматичность гетероциклов уменьшается в ряду: бензол (150) > тиофен (130) > пиррол (110) > фуран (80)

Азолы более ароматичны, чем пиррол и фуран. Объясняется это большей делокализацией электронной пары атомов серы, пиррольного азота или кислорода под влиянием пиридинового азота, электроотрицательность у которого выше, чем у атома углерода.



Поделиться:


Последнее изменение этой страницы: 2017-01-19; просмотров: 230; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.22.248.208 (0.026 с.)