![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Схемы включения рельсовых цепей без наложения сигнальных частот арсСодержание книги
Поиск на нашем сайте
Простая разветвленная (стрелочная) РЦ с путевыми дроссель-трансформаторами ДТМ-0,17 и путевыми реле ДСР-2мп (рис.4.6) применяется на стрелочных участках, не оборудованных системой АРС.
Рис.4.6 Схема разветвленной двухниточной рельсовой цепи
Благодаря последовательному включению путевых обмоток реле П1 и П2 в РЦ достигается повышенное входное сопротивление приемного конца, что способствует улучшению шунтовой чувствительности РЦ. Местная обмотка реле П1 включена параллельно местной обмотке реле П2 через собственный фронтовой контакт, к которому параллельно подключены последовательно соединенные тыловой контакт линейного реле и фронтовой контакт огневого реле красного огня светофора. Местные обмотки с указанными зависимостями включаются в схемах разветвленных РЦ в связи с наличием светофоров, ограждающих стрелочные участки. При вступлении поезда на РЦ и обесточивании путевых обмоток реле П1 и П2 разомкнутым фронтовым контактом реле П1 размыкается цепь местной обмотки этого реле, что обеспечивает надежное отпускание сектора. В результате размыкания фронтового контакта реле П1 отключается питание линейного реле (на рис.4.6 не показано), управляющего лампами светофора, ограждающего данную РЦ, и переключающего светофор при проходе за него первой колесной пары с разрешающего показания на запрещающее. Сектор реле П1 не переходит в положение, соответствующее свободности пути при уходе поезда с РЦ до тех пор, пока не отпустит сектор линейное реле и не притянется якорь реле красного огня светофора, ограждающего следующий за данной РЦ участок маршрута движения. Выполнение этого условия необходимо для восстановления нормального, притянутого положения якорей путевых реле. Таким образом путевые реле контролируют работу линейных реле и при повреждении последних сами осуществляют ограждение поезда, выполняя функции линейного реле. В схемах разветвленных РЦ, как и в неразветвленных РЦ, используется ряд отличающихся друг от друга способов включения местных и путевых обмоток путевых реле. Общим для разветвленных РЦ является включение конденсаторных блоков на питающем конце в качестве емкостного ограничителя тока и на приемном конце для компенсации индуктивного сопротивления и создания резонанса токов. В приведенной разветвленной РЦ на питающем и релейном концах включены конденсаторные блоки КБ-2. В качестве питающего трансформатора применен трансформатор СОБС-3АУ3.
Нормативное значение напряжения на путевых обмотках реле в нормальном режиме РЦ (55 В) должно устанавливаться переключением выводов (зажимов) на вторичной обмотке трансформатора ПТ.
Описание структурной схемы устройства Расчет надежности
Эксплуатационные показатели – это характеристики, определяющие качество выполнения изделием заданных функций. Общими из них для всех изделий длительного действия являются показатели надежности (долговечности), динамичности качества, эргономические показатели и экономичность эксплуатации. Надежность – это свойство объекта (например, изделия) выполнять заданные функции, сохраняя во времени значения установленных эксплуатационных показателей в допустимых пределах, соответствующих принятым режимам, условиям использования, технического обслуживания, ремонта, хранения и транспортирования. Надежность включает свойства безотказности, долговечности, ремонтопригодности и сохраняемости. Показателями надежности являются вероятность безотказной работы, средняя наработка на отказ, интенсивность отказов и др. Вероятность безотказной работы P(t ) – вероятность того, что в заданный момент времени t или в пределах заданной наработки, отказа в работе изделия не произойдет (отказ – событие, заключающееся в том, что изделие становится неспособным выполнять заданные функции с установленными показателями): P(t) = N(t) / N0, (2.1)
где N0 – число изделий, работающих в начале испытаний, N(t) – число изделий, работоспособных в конце промежутка времени t. Интенсивность отказов l(t) является функцией времени. Типичный характер изменения интенсивности отказов l(t) изделий от начала эксплуатации до списания представлен следующим графиком:
На рисунке 2.13 прослеживаются три основных периода работы изделия: I период – период приработки. Повышенная интенсивность отказов в этом периоде связана с дефектами конструкций, изготовления, сборки конечного изделия. С окончанием этого периода, как правило, заканчивается гарантийное обслуживания изделия. Многие компании и фирмы-производители не выпускают свою продукцию на рынок, пока изделие не пройдет период приработки.
II период – период нормальной работы. Интенсивность отказов в этом периоде остается практически постоянной и незначительной. IIIпериод – период старения. В этот период интенсивность отказов резко возрастает, происходит изнашивание, старение и необратимые физические явления, при которых эксплуатация изделия не возможна или экономически не оправдана. Для большинства изделий вычислительной техники период их морального устаревания опережает физический. Расчет надежности производят на этапе разработки объекта для определения его соответствия требованиям, сформулированным в ТЗ. Расчет производится в следующем порядке. Исходными данными является интенсивности отказов элементов различных групп (справочные значения). Интенсивность отказов показывает, какая часть элементов поотношению к общему количеству исправно работающих элементов в среднем выходит из строя в единицу времени (обычно за час). Сущность расчета надежности состоит в том, чтобы определить основные критерии характеризующие надежность: время наработки на отказ Т0 и вероятность безотказной работы Р(t). Элементы системы необходимо разбить на группы с одинаковыми интенсивностями отказов l и подсчитать внутри групп число элементов Мi. Справочные значения интенсивностей отказов l некоторых элементов приведены в следующей таблице.
Таблица 2.2 - Таблица интенсивности отказов
Вычислим произведение Мi на l, характеризующее долю отказов, вносимых элементами каждой группы в общую интенсивность отказов системы:
li=Мi*l (2.2)
Общая интенсивность отказов системы состоит из интенсивностей отказов входящих в нее групп элементов:
N lобщая = åli (2.3) i=1
где N – число групп с однотипными элементами. Вычислим наработку на отказ. Наработка на отказ Т0– это показатель безотказности, равный отношению наработки восстанавливаемого изделия к математическому ожиданию числа его отказов в течение этой наработки. Следовательно, это величина обратно пропорциональна интенсивности отказов, то есть:
Т0=1/ lобщая (2.4)
Вероятность безотказной работы Р(t) – это математическое ожидание того, что в заданном интервале времени не произойдет отказа. Вероятность безотказной работы Р(t) связана с интенсивностью отказов l следующей формулой:
Р(t)= е-lt= е-t/To, (2.5)
где е – это основание натурального логарифма; е = 2.718281828459045….
Кроме того, расчет надежности можно заменить графическим методом на координатной плоскости. На горизонтальной оси наносятся деления в соответствии с полученной наработкой на отказ Т0. На вертикальной оси отмечается точка Р(t)=1 и через нее проводится горизонтальная линия, а сама ось градуируется. Через точку P(1) проводится горизонтальная линия. Линия надежности определяется экспериментальным законом. На оси t откладывается T0 и эта величина сносится на горизонтальную линию, проведенную через точку P(1). Полученную точку соединяем прямой линией с точкой P(t)=1. Эта и есть линия надежности.
Для определения вероятности безотказной работы устройства в момент времени ti откладываем величину ti на оси t, сносим эту величину на полученную линию надежности, а затем на ось P и таким образом обнаруживаем P(ti ) для заданного момента времени ti. Например: Рисунок 2.14 – Линия надежности
Таблица 2.3 - Общая интенсивность отказов групп элементов
Вычислим наработку на отказ: Т
|
||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2017-01-19; просмотров: 188; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.26.49 (0.01 с.) |