ТОП 10:

Строение ядра клетки и функция его основных органоидов



Основные компоненты ядра: ядерная оболочка, кариоплазма или ядерный сок, хромосомы – хроматин, ядрышки. Ядерная оболочка состоит из двух мембран (наружной и внутренней), между которыми находится перинуклеалярное пространство. Наружная мембрана соединена с каналами ЭПС. Обе мембраны пронизаны порами. Через поры осуществляется транспорт веществ из ядра в цитоплазму: субчастицы рибосом, иРНК и др. Ядерная оболочка разобщает транскрипцию, протекающую в ядре, от трансляции белка в цитоплазме. Кариоплазма содержит ферменты и нуклеотиды, необходимые для синтеза нуклеиновых кислот и субчастиц рибосом. В ней располагаются хроматин и ядрышки (одно или несколько) и происходит процессинг (созревание) иРНК, тРНК и рРНК. Хромосомы представляют собой комплекс, состоящий из ДНК (40%) и белков- гистонов (60%), богатых аминокислотами аргинином и лизином. Различают эухроматин (максимально деконденсированные или рыхлые участки хромосом) и гетерохроматин (всегда конденсированные участки хромосом, которые реплицируются позже, чем эухроматин). Ядрышки непостоянные структуры: они демонтируются в начале деления клетки и вновь появляются к концу его. Химический состав: рРНК, белки и ДНК. Образуются на определенных участках хромосом – ядрышковых организаторах. В кариотипе человека ядрышкообразующие хромосомы относятся к группе D: 13, 14, 15 пары и к группе G: 21, 22 пары. В ядрышке происходит синтез рРНК и образование субчастиц рибосом.

Строение и функции ДНК

ДНК состоит из нуклеотидов, в состав которых входят сахар – дезоксирибоза, фосфат и одно из азотистых оснований – пурин (аденин или гуанин) либо пиримидин (тимин или цитозин). Молекулы ДНК включают в себя 2 полинуклеотидные цепи, соединенные друг с другом азотистыми основаниями с помощью водородных связей по принципу комплементарности (аденин -2вод.связи-тимин, гуанин-3вод.связи-цитозин). Цепи антипараллельны: 5’-конец одной цепи соединяется с 3’-концом другой цепи. Чаще всего спирали правозакрученные. В структурной организации молекулы ДНК можно выделить первичную структуру – полинуклеотидную цепь, вторичную структуру – две комплементарные друг другу и антипараллельные полинуклеотидные цепи, соединенные водородными связями, и третичную структуру – трехмерную спираль с приведенными выше пространсвенными характеристиками. Функции ДНК – сохранение и передача наследственной информации от клетки к клетке, от организма к организму (в основе этой функции лежит репликация ДНК); регуляция всех процессов, протекающих в клетке (в основе этой функции лежит транскрипция). Свойства: способность к самокопированию (репликации), к молекулярному восстановлению (репарации).

Функции ДНК:
* Молекулы ДНК хранят (содержат) наследственную информацию (программу) о структуре специфических для каждого организма белков.
* Молекулы ДНК обеспечивают передачу наследственной информации от клетки к клетке, от организма к организму.
* Молекулы ДНК участвуют в реализации генетической информации, т. е. участвуют в процессе синтеза полипептидов.

Репликация ДНК. Ферменты репликации

Репликация ДНК — ключевое событие в ходе деления клетки. Принципиально, чтобы к моменту деления ДНК была реплицирована полностью и при этом только один раз. Это обеспечивается определёнными механизмами регуляции репликации ДНК. Репликация проходит в три этапа:

1. инициация репликации

2. элонгация

3. терминация репликации.

ДНК – полимераза

ДНК-полимераза — фермент, участвующий в репликации ДНК. Ферменты этого класса катализируют полимеризацию дезоксирибонуклеотидов вдоль цепочки нуклеотидов ДНК, которую фермент «читает» и использует в качестве шаблона. Тип нового нуклеотида определяется по принципу комплементарности с шаблоном, с которого ведётся считывание. Собираемая молекула комплементарна шаблонной моноспирали и идентична второму компоненту двойной спирали.

Выделяют ДНК-зависимую ДНК-полимеразу, использующую в качестве матрицы одну из цепей ДНК, и РНК-зависимую ДНК-полимеразу, способную также к считыванию информации с РНК (обратная транскрипция).

ДНК-полимеразу считают холоферментом, поскольку для нормального функционирования она требует присутствия ионов магния в качестве кофактора. В отсутствии ионов магния о ней можно говорить как об апоферментe.

ДНК-полимераза начинает репликацию ДНК, связываясь с отрезком цепи нуклеотидов. Среднее количество нуклеотидов, присоединяемое ферментов ДНК-полимеразой за один акт связывания/диссоциации с матрицей, называют процессивностью.

ДНК – лигазы

Лигаза — фермент, катализирующий соединение двух молекул с образованием новой химической связи (лигирование). При этом обычно происходит отщепление (гидролиз) небольшой химической группы от одной из молекул.

Лигазы относятся к классу ферментов EC 6.

В молекулярной биологии лигазы разделяют на две большие группы — РНК-лигазы и ДНК-лигазы. ДНК-лигаза, осуществляющая репарацию ДНК

ДНК-лигазы — ферменты, катализирующие ковалентное сшивание цепей ДНК в дуплексе при репликации, репарации и рекомбинации. Они образуют фосфодиэфирные мостики между 5'-фосфорильной и 3'-гидроксильной группами соседних дезоксинуклеотидов в местах разрыва ДНК или между двумя молекулами ДНК. Для образования этих мостиков лигазы используют энергию гидролиза пирофосфорильной связи АТФ. Один из самых распространённых коммерчески доступных ферментов — ДНК-лигаза бактериофага Т4.

ДНК – геликазы

ДНК геликазы - ферменты раскручивающие двуцепочечную спираль ДНК с затратой энергии гидролиза трифосфатов NTP. Образуемая одноцепочечная ДНК участвует в различных процессах, таких как репликация, рекомбинация, и репарация. ДНК геликазы необходимы для репликации, репарации, рекомбинации и транскрипции. Геликазы присутствуют во всех организмах.

ДНК-топоизомеразы

ДНК-топоизомеразы—ферменты, изменяющие степень сверхспиральности и тип сверхспирали. Путём одноцепочечного разрыва они создают шарнир, вокруг которого нереплецированный дуплекс ДНК, находящейся перед вилкой, может свободно вращаться. Это снимает механическое напряжение, возникающее при раскручивании двух цепей в репликативной вилке, что является необходимым условием для её непрерывного движения. Кроме того, топоизомеразы (типа II) обеспечивают разделение или образование катенанов - сцепленных кольцевых ДНК (образуются в результате репликации кольцевой ДНК), а также устранение узлов и спутанных клубков из длинной линейной ДНК. Существует два типа топоизомераз. Топоизомеразы типа I уменьшают число сверхвитков в ДНК на единицу за один акт. Эти топоизомеразы надрезают одну из двух цепей, в результате чего фланкирующие дуплексные области могут повернутся вокруг интактной цепи, и затем воссоединяют концы разрезанной цепи. Эта реакция не требует энергии АТФ, т.к. энергия фосфодиэфирной связи сохраняется благодаря тому, что тирозиновый остаток в молекуле фермента выступает то в роли акцептора, то в роли донора фосфорильного конца разрезанной цепи.

Топоизомеразы типа II вносят временные разрывы в обе комплиментарные цепи, пропускают двухцепочечный сегмент той же самой или другой молекулы ДНК через разрыв, а затем соединяют разорванные концы. В результате за один акт снимаются два положительных или отрицательных сверхвитка. Топоизомеразы типа II тоже используют тирозиновые остатки для связывания 5¢-конца каждой разорванной цепи в то время . когда другой дуплекс проходит через место разрыва.

Праймаза

Праймаза—фермент, обладающий РНК-полимеразной активностью; служит для образования РНК-праймеров, необходимых для инициации синтеза ДНК в точке ori и дальнейшем для синтеза отстающей цепи.

Строение и функции РНК

РНК состоит из нуклеотидов, в состав которых входят сахар – рибоза, фосфат и одно из азотистых оснований (аденин, урацил, гуанин, цитозин). Образует первичную, вторичную и третичную структуры аналогично таким же у ДНК. Информация о последовательности аминокислот белка содержится в информационных РНК (иРНК, мРНК). Три последовательных нуклеотида (кодон) соответствуют одной аминокислоте. В эукариотических клетках транскирибированный предшественник мРНК или пре-мРНК процессируется с образованием зрелой мРНК. Процессинг включает удаление некодирующих белок последовательностей (интронов). После этого мРНК экспортируется из ядра в цитоплазму, где к ней присоединяются рибосомы, транслирующие мРНК с помощью соединённых с аминокислотами тРНК.Транспортные (тРНК) — малые, состоящие из приблизительно 80 нуклеотидов, молекулы с консервативной третичной структурой. Они переносят специфические аминокислоты в место синтеза пептидной связи в рибосоме. Каждая тРНК содержит участок для присоединения аминокислоты и антикодон для узнавания и присоединения к кодонам мРНК. Антикодон образует водородные связи с кодоном, что помещает тРНК в положение, способствующее образованию пептидной связи между последней аминокислотой образованного пептида и аминокислотой, присоединённой к тРНК. Рибосомальные РНК (рРНК) — каталитическая составляющая рибосом. Эукариотические рибосомы содержат четыре типа молекул рРНК: 18S, 5.8S, 28S и 5S. Три из четырёх типов рРНК синтезируются в ядрышке. В цитоплазме рибосомальные РНК соединяются с рибосомальными белками и формируют нуклеопротеин, называемый рибосомой. Рибосома присоединяется к мРНК и синтезирует белок. рРНК составляет до 80 % РНК, обнаруживаемой в цитоплазме эукариотической клетки.

Функции: способность к самовоспроизведению, способность сохранять свою организацию постоянной, способность приобретать изменения и воспроизводить их.







Последнее изменение этой страницы: 2016-12-27; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.235.77.252 (0.004 с.)