Строение прокариотической клетки 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Строение прокариотической клетки



Строение прокариотической клетки

К прокариотам относятся архебактерии, бактерии и синезеленые водоросли. Прокариоты — одноклеточные организмы, у которых отсутствуют структурно оформленное ядро, мембранные органоиды и митоз. Размеры клеток не более 10 мкм, обычно 0,5-3 мкм, отсутствует клеточный центр, отсутствует большинство органелл, отсутствующие органеллы заменяет выросты цитоплазматической мембраны- мезосомы, отсутствует циклоз – движение цитоплазмы, рибосомы прокариотической клетки существенно отличаются от рибосом эукариот, отсутствует ядро (есть кольцевая молекула ДНК единственной хромосомы, лишенная белков-гистонов). К прокариотам относят архебактерии (наиболее древние), истинные бактерии и сине-зеленые водоросли. Среди прокариотов есть аэробы, анаэробы, автотрофы и гетеротрофы. Прокариоты определяют границы жизни на Земле, обеспечивают круговорот многих веществ в природе.

2.Общий план строения эукариотической животной клетки

Эукариотические клетки имеют структурно оформленное ядро, возникли на базе прокариотических клеток благодаря эндосимбиозу разных прокариотических клеток. Размеры эукариотических клеток тканей животных и растений варьируют от 10 до 100 мкм. Основные компоненты – оболочка, цитоплазма, морфологически оформленное ядро. Генетический материал сосредоточен преимущественно в хромосомах ядра.

Системы жизнеобеспечения клетки

САМОСОХРАНЕНИЕ (система мембран), САМОРЕГУЛЯЦИЯ (система получения и превращения энергии), САМОВОСПРОИЗВЕДЕНИЕ (репликация, транскрипция и трансляция), Система мембран (цитоплазматическая мембрана, мембранные органеллы). Система авторепродукции (воспроизведение себе подобных) включает ДНК, РНК, рибосомы, множество ферментов. Система получения и трансформации энергии: митохондрии и хлоропласты.

Строение и функции цитоплазматической мембраны

1. Фосфолипидный бислой (заряженные «головки» – снаружи, незаряженные хвосты – внутри).

2. Белки (ферменты, рецепторы, переносчики и др.) встроены в фосфолипидный остов.

3. Снаружи к мембране примыкают липиды (липопротеиды) и углеводы (гликопротеиды), изнутри – белки.

Гликокаликс образован комплексами полисахаридов с белками – гликопретеинами и жирами – гликолипидами. Процентное содержание компонентов мембраны: белков в мембране колеблется от 40 до 70%, липидов – от 25 до 60%, углеводов – от 5 до 10%.

Функции цитоплазматической мембраны: защитная, регуляция проникновения веществ в клетку (К+/Na+-насос), рецепторная функция – восприятие сигналов, антигенная функция (гликопротеиды мембран являются антигенами (эритроцитарные антигены – группы крови), электрогенная.

Компартментация – это разделения на ячейки, отличные деталями химического состава.

Строение и функции ДНК

ДНК состоит из нуклеотидов, в состав которых входят сахар – дезоксирибоза, фосфат и одно из азотистых оснований – пурин (аденин или гуанин) либо пиримидин (тимин или цитозин). Молекулы ДНК включают в себя 2 полинуклеотидные цепи, соединенные друг с другом азотистыми основаниями с помощью водородных связей по принципу комплементарности (аденин -2вод.связи-тимин, гуанин-3вод.связи-цитозин). Цепи антипараллельны: 5’-конец одной цепи соединяется с 3’-концом другой цепи. Чаще всего спирали правозакрученные. В структурной организации молекулы ДНК можно выделить первичную структуру – полинуклеотидную цепь, вторичную структуру – две комплементарные друг другу и антипараллельные полинуклеотидные цепи, соединенные водородными связями, и третичную структуру – трехмерную спираль с приведенными выше пространсвенными характеристиками. Функции ДНК – сохранение и передача наследственной информации от клетки к клетке, от организма к организму (в основе этой функции лежит репликация ДНК); регуляция всех процессов, протекающих в клетке (в основе этой функции лежит транскрипция). Свойства: способность к самокопированию (репликации), к молекулярному восстановлению (репарации).

Функции ДНК:
* Молекулы ДНК хранят (содержат) наследственную информацию (программу) о структуре специфических для каждого организма белков.
* Молекулы ДНК обеспечивают передачу наследственной информации от клетки к клетке, от организма к организму.
* Молекулы ДНК участвуют в реализации генетической информации, т. е. участвуют в процессе синтеза полипептидов.

ДНК – полимераза

ДНК-полимераза — фермент, участвующий в репликации ДНК. Ферменты этого класса катализируют полимеризацию дезоксирибонуклеотидов вдоль цепочки нуклеотидов ДНК, которую фермент «читает» и использует в качестве шаблона. Тип нового нуклеотида определяется по принципу комплементарности с шаблоном, с которого ведётся считывание. Собираемая молекула комплементарна шаблонной моноспирали и идентична второму компоненту двойной спирали.

Выделяют ДНК-зависимую ДНК-полимеразу, использующую в качестве матрицы одну из цепей ДНК, и РНК-зависимую ДНК-полимеразу, способную также к считыванию информации с РНК (обратная транскрипция).

ДНК-полимеразу считают холоферментом, поскольку для нормального функционирования она требует присутствия ионов магния в качестве кофактора. В отсутствии ионов магния о ней можно говорить как об апоферментe.

ДНК-полимераза начинает репликацию ДНК, связываясь с отрезком цепи нуклеотидов. Среднее количество нуклеотидов, присоединяемое ферментов ДНК-полимеразой за один акт связывания/диссоциации с матрицей, называют процессивностью.

ДНК – лигазы

Лигаза — фермент, катализирующий соединение двух молекул с образованием новой химической связи (лигирование). При этом обычно происходит отщепление (гидролиз) небольшой химической группы от одной из молекул.

Лигазы относятся к классу ферментов EC 6.

В молекулярной биологии лигазы разделяют на две большие группы — РНК-лигазы и ДНК-лигазы. ДНК-лигаза, осуществляющая репарацию ДНК

ДНК-лигазы — ферменты, катализирующие ковалентное сшивание цепей ДНК в дуплексе при репликации, репарации и рекомбинации. Они образуют фосфодиэфирные мостики между 5'-фосфорильной и 3'-гидроксильной группами соседних дезоксинуклеотидов в местах разрыва ДНК или между двумя молекулами ДНК. Для образования этих мостиков лигазы используют энергию гидролиза пирофосфорильной связи АТФ. Один из самых распространённых коммерчески доступных ферментов — ДНК-лигаза бактериофага Т4.

ДНК – геликазы

ДНК геликазы - ферменты раскручивающие двуцепочечную спираль ДНК с затратой энергии гидролиза трифосфатов NTP. Образуемая одноцепочечная ДНК участвует в различных процессах, таких как репликация, рекомбинация, и репарация. ДНК геликазы необходимы для репликации, репарации, рекомбинации и транскрипции. Геликазы присутствуют во всех организмах.

ДНК-топоизомеразы

ДНК-топоизомеразы—ферменты, изменяющие степень сверхспиральности и тип сверхспирали. Путём одноцепочечного разрыва они создают шарнир, вокруг которого нереплецированный дуплекс ДНК, находящейся перед вилкой, может свободно вращаться. Это снимает механическое напряжение, возникающее при раскручивании двух цепей в репликативной вилке, что является необходимым условием для её непрерывного движения. Кроме того, топоизомеразы (типа II) обеспечивают разделение или образование катенанов - сцепленных кольцевых ДНК (образуются в результате репликации кольцевой ДНК), а также устранение узлов и спутанных клубков из длинной линейной ДНК. Существует два типа топоизомераз. Топоизомеразы типа I уменьшают число сверхвитков в ДНК на единицу за один акт. Эти топоизомеразы надрезают одну из двух цепей, в результате чего фланкирующие дуплексные области могут повернутся вокруг интактной цепи, и затем воссоединяют концы разрезанной цепи. Эта реакция не требует энергии АТФ, т.к. энергия фосфодиэфирной связи сохраняется благодаря тому, что тирозиновый остаток в молекуле фермента выступает то в роли акцептора, то в роли донора фосфорильного конца разрезанной цепи.

Топоизомеразы типа II вносят временные разрывы в обе комплиментарные цепи, пропускают двухцепочечный сегмент той же самой или другой молекулы ДНК через разрыв, а затем соединяют разорванные концы. В результате за один акт снимаются два положительных или отрицательных сверхвитка. Топоизомеразы типа II тоже используют тирозиновые остатки для связывания 5¢-конца каждой разорванной цепи в то время. когда другой дуплекс проходит через место разрыва.

Праймаза

Праймаза—фермент, обладающий РНК-полимеразной активностью; служит для образования РНК-праймеров, необходимых для инициации синтеза ДНК в точке ori и дальнейшем для синтеза отстающей цепи.

Строение и функции РНК

РНК состоит из нуклеотидов, в состав которых входят сахар – рибоза, фосфат и одно из азотистых оснований (аденин, урацил, гуанин, цитозин). Образует первичную, вторичную и третичную структуры аналогично таким же у ДНК. Информация о последовательности аминокислот белка содержится в информационных РНК (иРНК, мРНК). Три последовательных нуклеотида (кодон) соответствуют одной аминокислоте. В эукариотических клетках транскирибированный предшественник мРНК или пре-мРНК процессируется с образованием зрелой мРНК. Процессинг включает удаление некодирующих белок последовательностей (интронов). После этого мРНК экспортируется из ядра в цитоплазму, где к ней присоединяются рибосомы, транслирующие мРНК с помощью соединённых с аминокислотами тРНК. Транспортные (тРНК) — малые, состоящие из приблизительно 80 нуклеотидов, молекулы с консервативной третичной структурой. Они переносят специфические аминокислоты в место синтеза пептидной связи в рибосоме. Каждая тРНК содержит участок для присоединения аминокислоты и антикодон для узнавания и присоединения к кодонам мРНК. Антикодон образует водородные связи с кодоном, что помещает тРНК в положение, способствующее образованию пептидной связи между последней аминокислотой образованного пептида и аминокислотой, присоединённой к тРНК. Рибосомальные РНК (рРНК) — каталитическая составляющая рибосом. Эукариотические рибосомы содержат четыре типа молекул рРНК: 18S, 5.8S, 28S и 5S. Три из четырёх типов рРНК синтезируются в ядрышке. В цитоплазме рибосомальные РНК соединяются с рибосомальными белками и формируют нуклеопротеин, называемый рибосомой. Рибосома присоединяется к мРНК и синтезирует белок. рРНК составляет до 80 % РНК, обнаруживаемой в цитоплазме эукариотической клетки.

Функции: способность к самовоспроизведению, способность сохранять свою организацию постоянной, способность приобретать изменения и воспроизводить их.

Свойство гена

1. Ген дискретен в своем действии, т. е. обособлен в своей активности от других генов.
2. Ген специфичен в своем проявлении, т. е. отвечает за строго определенный признак или свойство организма.
3. Ген может действовать градуально, т. е. усиливать степень проявления признака при увеличении числа доминантных аллелей (дозы гена).
4. Один ген может влиять на развитие разных признаков — это множественное, или плейотропное, действие гена.
5. Разные гены могут оказывать одинаковое действие на развитие одного и того же признака (часто количественных признаков) — это множественные гены, или полигены.
6. Ген может взаимодействовать с другими генами, что приводит к появлению новых признаков. Такое взаимодействие осуществляется опосредованно — через синтезированные под их контролем продукты своих реакций.
7. Действие гена может быть модифицировано изменением его местоположения в хромосоме (эффект положения) или воздействием различных факторов внешней среды.

Строение прокариотической клетки

К прокариотам относятся архебактерии, бактерии и синезеленые водоросли. Прокариоты — одноклеточные организмы, у которых отсутствуют структурно оформленное ядро, мембранные органоиды и митоз. Размеры клеток не более 10 мкм, обычно 0,5-3 мкм, отсутствует клеточный центр, отсутствует большинство органелл, отсутствующие органеллы заменяет выросты цитоплазматической мембраны- мезосомы, отсутствует циклоз – движение цитоплазмы, рибосомы прокариотической клетки существенно отличаются от рибосом эукариот, отсутствует ядро (есть кольцевая молекула ДНК единственной хромосомы, лишенная белков-гистонов). К прокариотам относят архебактерии (наиболее древние), истинные бактерии и сине-зеленые водоросли. Среди прокариотов есть аэробы, анаэробы, автотрофы и гетеротрофы. Прокариоты определяют границы жизни на Земле, обеспечивают круговорот многих веществ в природе.

2.Общий план строения эукариотической животной клетки

Эукариотические клетки имеют структурно оформленное ядро, возникли на базе прокариотических клеток благодаря эндосимбиозу разных прокариотических клеток. Размеры эукариотических клеток тканей животных и растений варьируют от 10 до 100 мкм. Основные компоненты – оболочка, цитоплазма, морфологически оформленное ядро. Генетический материал сосредоточен преимущественно в хромосомах ядра.



Поделиться:


Последнее изменение этой страницы: 2016-12-27; просмотров: 98; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 34.201.37.128 (0.026 с.)