Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Построение комплекса кубов и его минимального покрытияСодержание книги
Поиск на нашем сайте
Терм максимального ранга n- куба принято называть 0-кубом (точка вершины) и обозначают К0. Например, для f(x1,x2,x3)= (0,4,7) комплекс 0-кубов будет таким Определение. Если два 0-куба из комплекса К0 различаются только по одной координате, то два таких 0-куба образуют один 1-куб. Он представляется общими элементами 0-кубов, причем на месте координаты, по которой различаются 0-кубы, указывают символ Х, обозначающий независимую координату (переменную). Различие координат определяют последовательным сравнением первого куба с остальными, затем второго с остальными и так далее. Например, два 0-куба 000 и 100 различаются только по одной координате, и они образуют 1-куб (отрезок), которому соответствует ребро трехмерного куба. Заметим, что 0-куб 111 не склеивается, так как отличается больше чем по одной координате. Все множество 1-кубов функции называется кубическим комплексом К- один и обозначается- К1. K1 = {X00} Комплекс К1 строится по комплексу К0 путем их сравнения и определяет все множество ребер, на концах которых функция принимает единичные значения. Если два 1-куба из комплекса К1 имеют общую независимую компоненту и различаются только по одной координате, то они образуют один 2-куб. Это грань для трехмерного куба. Все множество 2-кубов, построенного из комплекса К1, образует множество комплекса К2 (множество граней). Комплекс К3 = 0 - отсутствует в трехмерном кубе (часто r-куб называют интервалом (расстоянием) r- порядка). Перед построением очередного куба необходимо отметить те кубы, которые склеились хотя бы один раз. Например, звездочкой *. Это необходимо, так как могут быть неотмеченные (не склеившиеся) кубы о которых забывать нельзя. Они являются самостоятельными импликантами, которые так же включают в общее покрытие кубов С(f). Для нашего примера, общее покрытие будет выглядеть По индукции можно определить, что два r-куба, содержащие r координат и различающиеся только по одной координате, могут объединяться в (r + 1)-куб, (r + 1)-я независимая координата которого соответствует координате, по которой различаются r-кубы. Запись (r + 1)-куба состоит из общих компонент двух r-кубов, а компонента, принимающая в них различные значения, обозначается в (r + 1)-кубе как независимая компонента Х. Число независимых координат Х в кубе определяет его размерность. Например, куб 0Х1Х1ХХ имеет размерность r = 4. Определение. Объединение кубов комплексов К0,К1,...,Кn функции f(x1, x2, …, хn) называется кубическим комплексом K(f) функции f. K(f) = K(f) = К0 К1 К2 К3 ... В отличие от аналитических форм записи булевых функций, кубическое представление позволяет задавать булевы функции в виде множества кубов, компонентами которых являются только три символа 0; 1; X. Ограниченное количество символов в записи функций алгебры логики позволяет автоматизировать процесс минимизации с применением компьютерных систем. Задача минимизации булевых функций по критерию минимальности числа букв входящих в ДНФ или КНФ называется канонической задачей минимизации. Схема, получаемая в результате ее решения не является абсолютно минимальной, т.к. абсолютный минимум оборудования в большинстве случаев так и не достигается. Определение. Булева функция f(x1, x2, …, хn) представляется как множество С кубов, принадлежащих комплексу К(f), и таких, что каждая вершина комплекса К0 включена по крайней мере в один куб множества С. Полученное таким образом множество С называется покрытием комплекса K(f) и покрытием булевой функции. Каждому покрытию C(f) соответствует ДНФ функции. Например, дана функция f(х)= (3,4,5,6,7)= x2x3+x1 + +x1 x3+x1x2 +x1x2x3 Построим комплекс кубов К0,К1,К2,К3. К3= 0 Из комплекса кубов K(f) определяется его покрытие C(f) куда входят не отмеченная импликанта Х11 из куба К1 и покрытие 1ХХ из куба К2. C(f) =
Это покрытие включает в себя все 5 вершин комплекса К°. В самом деле, куб x11 может включать (покрывать) 011; 111. Куб 1xx может включать вершины 100, 101, 110, 111. Таким образом, множество C(f) является покрытием комплекса K(f). Отсюда можно написать минимизированное уравнение: f(х)= (3,4,5,6,7)=x2x3+x1.
Метод Квайна-Мак-Класски
При минимизации по методу Квайна предполагается, что минимизируемая функция представленна в СДНФ. Метод Квайна состоит из последовательного выполнения нескольких этапов. 1-й этап. Нахождение первичных импликант. Все минтермы данной функции сравниваются попарно. Если минтермы отличаются одной координатой типа Fхi+F =F, то выписывается конъюнкция F, являющаяся минтермом (r+l)-гo ранга. Минтермы r-го ранга, для которых произошло склеивание, отмечаются. Другими словами, нахождение простых импликант сводится к построению комплекса кубов K(f) = К0 К1 К2 … Кr. При построении последующих кубов, образующие предыдущие кубы отмечаются, чтобы выявить неотмеченные кубы. Этап заканчивается, когда ни один (r+1)-куб не может быть построен. При этом, все неотмеченные кубы комплекса K(f) тоже являются простыми импликантами и входят в покрытие C(f) функции f. Пример. Пусть задана функция F(х1,х2,х3,х4,х5)= (0,1,2,3,4,5,14,15,16,17,18,19,21,23,31) Для упрощения, 0-кубы упорядочивают по числу 1-ых координат (см. рисунок 6.3). Рис. 6.3-Комплекс кубов Простые и неотмеченные импликанты образуют покрытие С(f), которое может быть избыточным и требует последующих этапов минимизации, а именно - составления таблиц покрытия функции. 2-й этап. Составление таблиц покрытий. Понятно, что для нахождения минимальной формы покрытия необходимо удалить из покрытия некоторые простые или неотмеченные импликанты. Для этого используют таблицу, строки которой составляют импликанты покрытия, а столбцы - 0-кубы (минтермы) исходной функции. Если импликанта отличается от 0-куба (кроме независимых координат), то на их пересечении не ставится метка + (см. таблицу 6.1).
Таблица 6.1-Таблица покрытий комплекса кубов
3-й этап. Определение существенных импликант. Если в столбце таблицы покрытий имеется только одна метка, то первичная импликанта, стоящая в соответствующей строке, является существенной импликантой, и ее выписывают в новое минимальное покрытие C(f). Из таблицы покрытий исключаются строки, соответствующие существенным импликантам и столбцы минтермов, покрываемым этими существенными импликантами. Покрытие будет иметь вид:
C(f) = . В результате упрощения, получим новую таблицу 6.2 Таблица 6.2-Покрытия
4-й этап. Вычеркивание лишних столбцов. Если в таблице существенных импликант есть два столбца имеющих метки в одинаковых строках, то один из столбцов вычеркивается. 5-й этап. Вычеркивание простых лишних импликант. Если после вычеркивания столбцов в таблице появляются строки без меток, то импликанты этих строк вычеркиваются. 6-й этап. Выбор минимального покрытия. В таблице, полученной после выделения существенных импликант, выбирается совокупность простых импликант, обеспечивающая покрытие всех столбцов с минимальной ценой СA. В нашем примере выбирается импликанта Х0Х01 (или 10ХХ1, т.к. цены СA одинаковы). Таким образом, покрытие функции имеет вид: С(f) = и определяет минимальную ДНФ f = + + x2x3x4 + x5+x1x3x4x5 .. При использовании метода Квайна для СКНФ необходимо рассматривать значения функций f=0 и макстермы, соответствующие этим значениям. В результате получим Далее необходимо воспользоваться соотношением де - Моргана с тем, чтобы привести функцию к СДНФ. Все дальнейшие действия аналогичны.
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-26; просмотров: 675; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.31.178 (0.007 с.) |