Элементы квантовой статистики 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Элементы квантовой статистики



 

Квантовая статистика.

Фазовое пространство.

Функция распределения

 

Квантовая статистика — раздел статистической физики, исследующий системы, которые состоят из огромного числа частиц, подчиняющихся законам квантовой механики.

В отличие от исходных положений классической статистической физики, в которой тождественные частицы различимы (частицу можно отличить от всех таких же частиц), квантовая статистика основывается на принципе неразличимости тождественных частиц (см. § 226). При этом оказывается, как будет показано ниже, что коллективы частиц с целым и полуцелым спинами подчиняются разным статистикам.

Пусть система состоит из N частиц. Введем в рассмотрение многомерное пространство всех координат и импульсов частиц системы. Тогда состояние системы определяется заданием 6N переменных, так как состояние каждой частицы определяется трой кой координат х, у, z и тройкой соответствующих проекций импульса рх, ру, рz.Соответственно число «взаимно перпендикулярных» координатных осей данного про странства равно 6N. Это 6N-мерное пространство называется фазовым пространством. Каждому микросостоянию системы отвечает точка в 6N-мерном фазовом пространстве, так как задание точки фазового пространства означает задание координат и им пульсов всех частиц системы. Разобьем фазовое пространство на малые 6N-мерные элементарные ячейки объемом dqdp = dq1dq2 … dq3Ndp1dp2...dp3N, где q— совокупность координат всех частиц, р— совокупность проекций их импульсов. Корпускуляр-но-волновой дуализм свойств вещества (см. § 213) и соотношение неопределенностей Гейзенберга (см. § 215) приводят к выводу, что объем элементарной ячейки (он называется фазовым объемом) не может быть меньше чем h3 (h— постоянная Планка).

Вероятность dW данного состояния системы можно представить с помощью функции распределения f (q, p):

 

dW = f(q,p) dq dp. (234.1)

 

Здесь dW—вероятность того, что точка фазового пространства попадет в элемент фазового объема dqdp, расположенного вблизи данной точки q, р. Иными словами, dW представляет собой вероятность того, что система находится в состоянии, в котором ее координаты и импульсы заключены в интервале q, q+dq и р, p+dp.

Согласно формуле (234.1), функция распределения есть не что иное, как плотность вероятности определенного состояния системы. Поэтому она должна быть нормирована на единицу:

где интегрирование производится по всему фазовому пространству.

Зная функцию распределения f (q, p), можно решить основную задачу квантовой статистики — определить средние значения величин, характеризующих рассматрива емую систему. Среднее значение любой функции

(234.2)

Если иметь дело не с координатами и импульсами, а с энергией, которая квантуется, то состояние системы характеризуется не непрерывной, а дискретной функцией распределения.

Явное выражение функции распределения в самом общем виде получил американский физик Д. Гиббс (1839—1903). Оно называется каноническим распределением Гиббса. В квантовой статистике каноническое распределение Гиббса имеет вид

(234.3)

где А — постоянная, определяемая из условия нормировки к единице, n— совокупность всех квантовых чисел, характеризующих данное состояние. Подчеркнем, что f (En)есть именно вероятность данного состояния, а не вероятность того, что система имеет определенное значение энергии Еn,так как данной энергии может соответствовать не одно, а несколько различных состояний (может иметь место вырождение).

 



Поделиться:


Последнее изменение этой страницы: 2016-12-15; просмотров: 317; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.236.219.157 (0.021 с.)