Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Свойства бесконечно больших величин↑ ⇐ ПредыдущаяСтр 4 из 4 Содержание книги
Поиск на нашем сайте
1. Произведение б\б величины на функцию, предел которой отличен от нуля, есть величина б\б. 2. Сумма б\б величины и ограниченной функции есть величина б\б. 3. Частное от деления б\б величины на функцию, имеющую предел, есть величина б\б. Например: 1. если есть б\б величина при , функция при имеет предел , то функция - б\б. (1 свойство) 2. Если есть б\б величина при и - ограниченная функция, то - б\б функция (2 свойство) 3. является б\б функцией при . (свойство 3) СООТНОШЕНИЕ МЕЖДУ БЕСКОНЕЧНО МАЛЫМИ И БЕСКОНЕЧНО БОЛЬШИМИ ФУНКЦИЯМИ Теорема 1. Если функция f(x) является бесконечно большой при x→a, то функция 1 /f(x) является бесконечно малой при x→a. Примеры. 1. Ясно, что при x→+∞ функция y=x2+ 1 является бесконечно большой. Но тогда согласно сформулированной выше теореме функция – бесконечно малая при x→+∞, т.е. . 2. . Можно доказать и обратную теорему. Теорема 2. Если функция f(x) - бесконечно малая при x→a (или x→∞) и не обращается в нуль, то y= 1 /f(x) является бесконечно большой функцией.
Примеры. 1. . 2. . 3. , так как функции и - бесконечно малые при x→+∞, то , как сумма бесконечно малых функций есть функция бесконечно малая. Функция же является суммой постоянного числа и бесконечно малой функции. Следовательно, по теореме 1 для бесконечно малых функций получаем нужное равенство. Таким образом, простейшие свойства бесконечно малых и бесконечно больших функций можно записать с помощью следующих условных соотношений: A ≠ 0 .
ОСНОВНЫЕ ТЕОРЕМЫ О ПРЕДЕЛАХ. ПРИЗНАКИ СУЩЕСТВОВАНИЯ ПРЕДЕЛА.
2. Предел алгебраической суммы двух, трех и вообще определенного числа функций равен алгебраической сумме пределов этих функций, т.е. Пример. . 3. Предел произведения двух, трех и вообще конечного числа функций равен произведению пределов этих функций: . Следствие 1. Постоянный множитель можно выносить за знак предела: . Следствие 2. Предел степени равен степени предела: . Пример: . 4. Предел частного двух функций равен частному пределов этих функций, если предел знаменателя отличен от нуля, т.е. Примеры. 1.) . 2.) . 3.) Рассмотрим . При x→1 числитель дроби стремится к 1, а знаменатель стремится к 0. Но так как , т.е. есть бесконечно малая функция при x→ 1, то . 5. Пусть даны три функции f(x), u(x) и v(x), удовлетворяющие неравенствам u (x)≤f(x)≤ v(x). Если функции u(x) и v(x) имеют один и тот же предел при x→a (или x→∞), то и функция f(x) стремится к тому же пределу, т.е. если , то .
Смысл этой теоремы понятен из рисунка. 6. Если две функции f(x) и g(x) при всех значениях аргумента x удовлетворяют неравенству f(x)≥ g(x) и имеют пределы , то имеет место неравенство b≥c.
ЗАМЕЧАТЕЛЬНЫЕ ПРЕДЕЛЫ Первым замечательным пределом называется Вторым замечательным пределом: или Число . Точнее …, т.е является числом иррациональным. Играет весьма важную роль в математическом анализе. Широко используются логарифмы по основанию , называемые натуральными.
|
||||
Последнее изменение этой страницы: 2016-12-14; просмотров: 349; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.94.77 (0.006 с.) |