Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Никаких других формул в логике высказываний нет.

Поиск

Определение такого вида называется индуктивным. В п.п. 1 и 2 определены элементарные формулы, в п.п. 3 и 4 даны правила образования новых формул из любых двух данных формул.

Условимся для упрощения записей не заключать в скобки формулы, не являющиеся частями других формул или стоящие под знаком отрицания. Заметим, что в формуле число левых скобок всегда должно быть равно числу правых скобок.

Опишем процедуру формализации высказываний:

1. Если высказывание – простое, то ему ставится в соответствие элементарная формула.

2. Если высказывание – составное, то для составления соответствующей формулы нужно: а) выделить все элементарные высказывания и логические связки, образующие данное составное высказывание; б) заменить их соответствующими символами; в) расставить скобки в соответствии со смыслом данного высказывания.

Пример 8: Определите логическую структуру высказываний (формализуйте высказывания):

1. Е = «Ваш приезд не является ни необходимым, ни желательным».

Составляющие простые высказывания: А = Ваш приезд необходим; В = Ваш приезд желателен. Они соединены между собой неявно имеющимся в высказывании Е союзом «и» и, кроме того, к каждому из них относится частица «не». Таким образом, форма сложного высказывания имеет вид:

2. Е = «Поиски врага длились уже три часа, но результатов не было, притаившийся враг ничем себя не выдал».

Переформулируем высказывание таким образом, чтобы выделить логические связки, неявно соединяющие простые высказывания: «Если притаившийся враг ничем себя не выдал, то его поиски длились уже три часа и результатов не было». Теперь можно выделить простые высказывания: А = Враг себя выдал; В = Поиски врага длились уже три часа и С = Результат был. Теперь можно формализовать сложное высказывание: .

Замечание: Символ импликации ставится там, где подразумевается вторая часть союза «если…, то…», т.е. на месте «то». Таким образом, формула, полученная во втором примере, читается: «Если не А, то В и не С».

3. Е = «Если число делится на 2 и на 3, то оно делится на 6».

В этом высказывании можно выделить следующие элементарные высказывания: А = Число делится на 2, В = Число делится на 3 и С = Число делится на 6. Тогда формула, соответствующая сложному высказыванию, имеет вид: .

Последний пример наглядно показывает, почему математическую логику интересует только логическая структура высказываний. Точно такую же логическую структуру, как в третьем примере имеет большое количество, например, математических теорем: «Если в четырехугольнике противоположные стороны параллельны и равны, то этот четырехугольник - параллелограмм» или «Если две прямые параллельны третьей прямой, то они параллельны друг другу».

Пример 9: По форме высказываний и выраженным на естественном языке составляющим его простым высказываниям получить фразу на естественном языке.

1. .

Составляющие простые высказывания:

А = Человек с детства давал нервам властвовать над собой.

В = Человек в юности давал нервам властвовать над собой.

С = Нервы привыкнут раздражаться.

D = Нервы будут послушны.

Для начала прочитаем формулу с использованием логических связок, не обращая внимания на смысл составляющих простых высказываний: «Если не А и не В, то не С и D». Теперь подставим вместо букв соответствующие высказывания, не произнося повторяющиеся части или заменяя их синонимами (местоимениями). Получим следующую фразу на естественном языке:

Е = Если человек с детства и юности своей не давал нервам властвовать над собой, то они не привыкнут раздражаться и будут ему послушны. (К.Д. Ушинский)

2. .

Составляющие простые высказывания:

А = Некто является врачом.

В = Больной поговорил с врачом.

С = Больному стало легче.

Фраза на естественном языке:

Е = Если больному после разговора с врачом не становится легче, то это не врач. (В.М. Бехтерев)

Вычислить значение логического выражения (формулы ЛВ) – значит найти значение истинности этого выражения при заданных значениях истинности составляющих переменных.

При вычислении значения формулы ЛВ логические операции (если нет скобок) вычисляются в определенном порядке:

1) негация (отрицание); 2) конъюнкция; 3) дизъюнкция; 4) импликация и 5) эквиваленция.

Пример 10: Даны формулы. Определить порядок вычисления формул:

1. . Порядок вычисления следующий:

1) отрицание ; 2) конъюнкция ; 3) дизъюнкция ; 4) импликация и, наконец, эквиваленция .

2. . Порядок вычисления следующий:

1) отрицание ; 2) импликация ; 3) конъюнкция ; 4) дизъюнкция ; и 5) эквиваленция .

Удобной формой записи при нахождении значений формулы, соответствующих всевозможным наборам значений ее переменных, является таблица, которую называют таблицей истинности.

Для начала научимся определять количество строк в таблице. Если высказывание одно, то оно может принимать только два значения истинности – «истина» и «ложь», поэтому строк в такой таблице 3 (две строки для значений переменной и строка заголовка). Примером такой таблицы служит таблица истинности в определении негации. Если переменных в формуле две, то они могут принимать одновременно такие значения: оба высказывания истинны, первое – истинно, а второе – ложно, первое – ложно, а второе – истинно и, наконец, оба они могут быть ложными. Число строк в такой таблице равно 5 (плюс строка заголовка). Вообще, число наборов значений, которые могут принимать п переменных, находится как 2п.

Сформулируем алгоритм построения таблицы истинности сложного высказывания:

1. Вычислить количество строк и столбцов в таблице истинности.

Пусть в формуле п различных переменных и k операций. Переменные считаем каждую только один раз, а символы операций – все, сколько есть. Тогда число строк в таблице равно 2п + 1 (число наборов значений переменных плюс строка заголовка), а число столбцов в таблице равно n + k.

2. Начертить таблицу.

3. Заполнить строку заголовка.

В строке заголовка записываем промежуточные формулы, начиная с элементарных и учитывая порядок выполнения операций. Вместо промежуточных формул, если они большие, можно записывать их порядковые номера (из порядка выполнения операций).

4. Заполнить оставшиеся строки таблицы, начиная с первого столбца.

При вычислении значений промежуточных формул, надо помнить, что в каждой операции участвует не более двух формул (может быть и не элементарных).

Пример 11: Составить таблицы истинности для формул: 1) ; 2) .

1. . Эта формула содержит 2 различные переменные (К и С) и 4 символа логических операций, т.е. n = 2 и k = 4. Тогда строк в таблице 22 + 1 = 4 + 1 = 5, а столбцов – 2 + 4 = 6. Рисуем таблицу:

           
           
           
           
           

Определим порядок выполнения операций: 1) отрицание ; 2) дизъюнкция ; 3) конъюнкция и 4) импликация .

Заполняем строку заголовка, начиная с элементарных формул:

К С
           
           
           
           

По-другому строка заголовка может выглядеть так:

К С
           
           
           
           

Заполняем первый столбик значениями истинности переменной К, для этого число пустых строк делим пополам (4: 2 = 2) и в половине пишем значение «истина», а в оставшейся половине – «ложь»:

К С
           
           
           
           

Заполняем второй столбик значениями истинности переменной С. Для этого число пустых строк делим на 4 (4: 4 = 1) и попеременно записываем в строки по одному значению «истина» и «ложь» таким образом, чтобы каждому значению истинности переменной К соответствовали оба значения истинности переменной С:

К С
           
           
           
           

Начиная с третьего столбика, заполняем строки результатами выполнения операций. В третьем столбике записываем результат выполнения операции отрицания . При этом смотрим на соответствующие значения переменной С:

К С
           
           
           
           

В четвертом столбике записываем результаты выполнения дизъюнкции , обращая внимание на значения истинности переменных К и С в соответствующей строке:

К С
           
           
           
           

В пятом столбике записываем результаты выполнения операции конъюнкции . При этом используем значения истинности соответствующих операций из третьего и четвертого столбиков:

К С
           
           
           
           

И, наконец, в шестом столбике записываем результаты выполнения итоговой операции импликации , используя результаты предыдущей операции конъюнкции и значения истинности переменной К:

К С
           
           
           
           

Из итогового результата мы можем сделать следующий вывод: какие бы по смыслу элементарные высказывания не составляли высказывание, соответствующее данной логической структуре, в итоге мы получим истинное высказывание.



Поделиться:


Последнее изменение этой страницы: 2016-12-28; просмотров: 199; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.72.244 (0.007 с.)