Конспект лекций для первокурсника 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Конспект лекций для первокурсника



ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

 

Химия

Конспект лекций для первокурсника

 

 

ПЕНЗА ИИЦ ПГУ 2004


УДК 54

Х46

 

Рецензент:

кандидат технических наук, профессор кафедры
«Химическое машиностроение и электрохимическое производство»
Пензенского государственного университета
Г. Н. Мальцева

 

  Х46 Химия: конспект лекций для первокурсника / Авторы-сост. Ю. П. Перелыгин, И. Г. Кольчугина, Т. К. Семченко [и др.]; под ред. Ю. П. Перелыгина. – Пенза: Информационно-издательский центр ПГУ, 2004. – 74, [2] с.: ил. – Библиогр.: с. 75.

 

В предлагаемом пособии, которое подготовлено в соответствии с действующим образовательным стандартом сотрудниками кафедры «Общая и биологическая химия», рассмотрены основы общей химии.

Предназначено для студентов вузов, обучающихся по специальностям, на которых предусмотрено изучение курса «Общая химия», и может быть полезно для преподавателей средних школ.

 

УДК 54

 

Авторы-составители:

Ю. П. Перелыгин, И. Г. Кольчугина, Т. К. Семченко,
К. М. Колмаков, С. Ю. Киреев, С. В. Кабанов, Г.Е. Ванина

 

 

© Информационно-издательский центр ПГУ, 2004

© Авторы-составители, указанные на обороте
титульного листа, 2004


ВВЕДЕНИЕ

ХИМИЯнаука, изучающая строение веществ и их превращения, сопровождающиеся изменением состава и (или) строения. Число химических соединений огромно и все время увеличивается, поскольку химия сама создает свой объект; к концу XX в. известно около 10 млн химических соединений. Химия как наука и отрасль промышленности существует недолго (около 400 лет).

Поскольку почти вся практическая деятельность людей связана с применением материи как вещества, химическое знание необходимо во всех областях науки и технологии, осваивающих материальный мир. Поэтому сегодня химия стала, наравне с математикой и физикой, хранилищем и генератором такого знания, которое «пропитывает» всю остальную науку.

Химией как наукой то слепо восхищались, то слепо отрицали. На деле химия является системообразующим фактором современного общества, т.е. совершенно необходимым условием его существования и воспроизводства.

Химия как дисциплина относится к циклу естественнонаучных дисциплин. Изучение ее базируется на математике и физике.

Конспект лекций, написанный в соответствии с требованиями образовательного стандарта сотрудниками кафедры «Общая и биологическая химия Пензенского государственного университета, предназначен для студентов-первокурсников, обучающихся по специальностям технического направления.

 

 

 
 

ЛЕКЦИЯ 1. Теория строения атома

Общие сведения о структуре атома.

Атом – сложная микросистема, состоящая из множества микрочастиц, подчиняющихся законам микромира. С точки зрения химии, атом – наименьшая частица химического элемента, обладающая всеми его химическими свойствами.

Атом состоит из положительно заряженного ядра и движущихся вокруг него отрицательно заряженных электронов. Носителем положительного заряда в ядре является протон. В ядра всех атомов, кроме водорода, входят нейтроны.

Частицы Масса покоя Заряд
грамм А.е.м. Кулон В C G S E
Протон (р) 1,672.10-24 1,007276 1,602.10-19 4,803.10-10
Нейтрон (n) 1,675.10-24 1,008665    
Электрон (ē) 9,108.10-28 0,000549 1,602.10-19 4,803.10-10

Масса электрона в 1823 раз меньше массы протона или нейтрона, поэтому масса атома, по существу, равна сумме масс протонов и нейтронов.

Последующее изучение структуры ядер химических элементов показало, что они могут отличаться друг от друга сочетанием количества протонов и нейтронов, образуя изотопы (р = const), изотоны (n = const), изобары (р + n = const).

Химические свойства атомов и молекул зависят от строения электронных оболочек атомов, особенно её внешней части. Её строение изучается с помощью оптических спектров атомов (спектр атома водорода).

 

Квантовые числа.

1. Главное квантовое число n (n = от 1 до ¥) определяет энергию электрона (ē) на уровне в атоме, Е = –A/ n 2 и радиус наибольшей вероятности его нахождения r = n 2/B (где А и В – постоянные для данного атома химического элемента, зависимые только от заряда ядра).

2. Орбитальное квантовое число (l = 0, 1, 2,…до (n–1)) определяет форму электронного облака и энергию электрона на подуровне:

 

под уровень s p d f
l        

 

3. Магнитное квантовое число (m = – l, 0, + l) определяет расположение орбитали в пространстве.

Число возможных энергетических орбиталей на подуровне равно (2 l +1). Графически атомная орбиталь изображается .

 

Орбитальное квантовое число (l) Магнитное квантовое число (m) Число атомных орбиталей
s     
p –1,0,+1   
d –2, –1, 0, +1, +2   
f –3, –2, –1, 0, +1, +2, +3   .

4. Спиновое квантовое число (ms), ). Упрощенно спин можно представить как характеристику собственного вращения электрона вокруг своей оси.

Лекция 2.

Таблица 1

Лекция 3. Химическая связь.

Лекция 7. Растворы

Раствором называется гомогенная система (твердая, жидкая или газообразная), состоящая из двух или более компонентов. То вещество, которого больше, называют растворителем.

Процесс растворения твердого вещества сопровождается разрушением кристаллической решетки, что не наблюдается при растворении жидкости или газа. В растворе образуются сольваты или, для водных растворов, гидраты.

С термодинамической точки зрения процесс растворения есть самопроизвольный процесс и для него энергия Гиббса меньше нуля (Δ G = (Δ HТ Δ S) < 0). Следовательно, самопроизвольное растворение твердого вещества возможно, если Δ H < 0 (энтальпийный фактор – химическая теория растворов), т.е. если система, в данном случае раствор, будет обладать меньшей величиной Δ H, чем суммарная величина Δ H растворителя и растворенного вещества в отдельности, и если Δ S > 0 (энтропийный фактор – физическая теория растворов), т.е. при растворении возрастает беспорядок в системе. В некоторых случаях образование раствора происходит и тогда, когда Δ H > 0, но при этом произведение
Т Δ S > Δ H, т.е. энтропийный фактор преобладает над энатальпийным. Если при образовании раствора Δ H = 0, т.е. взаимодействие между молекулами растворителя и растворенного вещества точно такое же, как и между молекулами растворителя, то образуется так называемый идеальный раствор. В данном случае образование раствора происходит за счет увеличения энтропии (Δ S > 0)

Состав раствора выражается несколькими видами концентраций (таблица 2).

Растворимость –это способность вещества растворяться в определенном растворителе. Мерой растворимости является коэффициент растворимости – это масса безводного вещества, которая может раствориться с образованием насыщенного раствора в 100 г растворителя при данной температуре. Насыщенный раствор находится в равновесии с осадком растворенного вещества. Пересыщенный раствор содержит больше вещества, чем это определяется его растворимостью. Ненасыщенный раствор содержит меньше вещества, чем это определяется его растворимостью.

Растворимость зависит от следующих факторов: а) природа вещества; б) природа растворителя; в) внешние условия (температура, давление и др).

Природа вещества. Существуют растворимые (более 1 г на 100 г воды, NaCl), малорастворимые (от 0,1 до 1 г на 100 г воды, Ca(OH)2), практически нерастворимые (менее 0,1 г на 100 г воды, CaCO3) вещества. Абсолютно нерастворимых веществ нет.

Природа растворителя. Подобное растворяется в подобном. Соединения с ионным типом связей (соли, щелочи) хорошо растворяются в полярных растворителях (вода), неполярные молекулы (кислород) – в неполярных растворителях.

 

Таблица 2

Уравнения для расчета концентрации раствора

Массовая доля Отношение массы растворенного вещества А в 100 единицах массы раствора
Молярная концентрация Количество молей растворенного вещества А, содержащихся в 1 л раствора [моль/л]
Нормальная концентрация Количество моль-эквивалентов растворенного вещества А, содержащихся в 1 л раствора [моль/л]
Моляльная концентрация Количество молей вещества А, растворенного в 1 кг растворителя В [моль/кг]
Мольная доля Отношение числа молей растворенного вещества А к общему числу молей всех веществ, содержащихся в растворе , где – количество вещества растворителя В

Температура. Если при растворении вещества происходит поглощение тепла, т.е. процесс растворения эндотермический, то с повышением температуры растворимость веществ увеличивается. Если при растворении вещества происходит выделение тепла, т.е. процесс растворения экзотермический, то с повышением температуры растворимость веществ уменьшается. С повышением температуры взаимная растворимость жидкостей увеличивается. Растворимость газов при увеличении температуры уменьшается.

Давление существенно не влияет на растворимость твердых и жидких веществ, но сильно влияет на растворимость газов. Зависимость растворимости газов от давления выражается законом Генри: растворимость газа при постоянной температуре прямо пропорциональна его парциальному давлению:

,

где С (Х) – концентрация газа в насыщенном растворе, моль/л; К Г – постоянная Генри для газа Х, моль/л×Па; P (X) – давление газа Х над раствором, Па.

Закон Генри справедлив лишь для газов, которые обладают низкой растворимостью и не взаимодействуют с растворителем. При растворении смеси газов растворимость каждого из них пропорциональна его парциальному давлению (закон Дальтона).

Растворы неэлектролитов обладают рядом свойств (коллигативные), которые зависят от концентрации находящихся в растворе веществ (таблица 3).

Осмос – самопроизвольный переход растворителя через полупроницаемую мембрану из области, где концентрация растворителя больше, в область, где его концентрация меньше.

Таблица 3

Коллигативные свойства растворов

Первый закон Рауля Относительное понижение парциального давления пара растворителя над разбавленным раствором равно мольной доле растворенного вещества , где р 0 – давление насыщенного пара над чистым растворителем; р –давление насыщенного пара растворителя над раствором; n А и n В – количество растворенного вещества и растворителя, соответственно (моль)
Второй закон Рауля Повышение температуры кипения (или понижение температуры замерзания) разбавленных растворов неэлектролитов пропорционально моляльности растворенного вещества D Т кр = К Сm, где Сm – моляльная концентрация растворенного вещества; К – криоскопическая постоянная для данного растворителя (для воды К = 1,86); D Т кип = Е Сm, где Е – эбулиоскопическая постоянная для данного растворителя (для воды Е = 0,52)
Закон Вант-Гоффа Осмотическое давление p осм численно равно тому давлению, которое оказывало бы растворенное вещество, если бы оно при данной температуре находилось в состоянии идеального газа и занимало объем, равный объему раствора , или где СМ – молярная концентрация растворенного вещества, моль/л; n – количество растворенного вещества, (моль); R – универсальная газовая постоянная (8,31 Дж/моль К); Т – температура, К

 

 


Лекция 10. Электрохимия.

Электродный потенциал

Возникновение электродного потенциала металла. Электроны в металле занимают энергетические уровни, образующие зоны. Эти зоны расположены ниже уровня энергии свободного электрона. Если мы хотим удалить электрон из металла - перенести его от нижнего края зоны проводимости до уровня свободного электрона, мы должны затратить работу. Эта работа называется внешней работой выхода электрона.

Если два разных металла приведены в тесное соприкосновение - контакт, то определенное количество электронов переходит от того металла, у которого работа выхода меньше, к тому, у которого она больше, в результате чего один металл зарядится отрицательно, а другой положительно. Это явление лежит в основе возникновения контактной разности потенциалов.

Погрузим теперь металл в любой раствор электролита или в воду. Кристаллическая решетка металлов образована катионами, между которыми движутся нелокализованные электроны. Характер взаимодействия полярных молекул воды (растворителя) с катионами решетки металла зависит от энергии его кристаллической решетки (энергии сублимации и ионизации атомов) и энергии гидратации его ионов. При этом может два возможных случая.

Первый случай. Если энергия гидратации (Егидр) больше энергии кристаллической решетки (Е кр.р.), то более вероятен процесс отрыва от поверхности металла положительных ионов, которые взаимодействуют с полярными молекулами воды и в гидратированном состоянии переходят в раствор. Поверхность металла приобретает отрицательный заряд, а слой раствора, примыкающий к ней - положительный. Переход первых катионов металлов требует меньшей затраты энергии, чем удаление последующих, т.к. поверхность металла уже приобрела отрицательный заряд. По мере увеличения концентрации катионов в растворе у поверхности, вероятность выхода ионов из металла уменьшается, а вероятность входа их в металл (адсорбция) из раствора увеличивается. Если скорости этих процессов сравниваются, то устанавливается динамическое равновесие на границе металл-раствор. Между отрицательно заряженным металлом и положительно заряженным раствором возникает двойной электрический слой, строение которого напоминает строение конденсатора, между обкладками которого существует разность потенциалов, называемый в электрохимии равновесный потенциал. Согласно Конвенции Международного Союза химиков потенциалу условились приписывать тот знак, который возникает на поверхности металла в двойном электрическом слое. Схематически этот процесс можно изобразить так: окисление

M + mH2O = [Mn+(H2O)m] + ne

в растворе на металле

Такое поведение металла в растворе электролита характерно для активных металлов (Mg, Zn, Fe, Ni...)

Второй случай. Если энергия гидратации будет меньше энергии кристаллической решетки металла (это характерно для неактивных металлов: Cu, Hg, Bi), то преобладает процесс адсорбции катионов из раствора на поверхности электрода, заряжая его положительно; раствор же заряжается отрицательно за счет избытка аниов соли. На границе двух фаз металл-электролит также возникает двойной электрический слой с определенным электродным потенциалом. На примере медной пластины в растворе сульфата меди процесс схематично можно изобразить следующим образом:

[Cu] + Cu2+ + SO42- = [Cu]Cu2+ + SO42-

на металле в растворе

Если индифферентный - нерастворимый, например платиновый электрод погружен в электролит, содержащий окислитель и восстановитель (редокс-) систему, то в такой системе протекает два электродных процесса, или две окислительно-восстановительные полуреакции, сопровождающиеся переходом электронов между участвующими в реакции молекулами или (и) ионами. В общем виде этот процесс может быть изображен:

Ох + ne ↔Red,

где Ox и Red - окисленная и восстановленная формы частицы или частиц, n- число электронов, участвующих в реакции.

Для раствора содержащего одновременно ионы Fe+3 и Fe+2, вышеприведенная реакция запишется следующим образом:

Fe+3 + е ↔ Fe+2 .

В данном случае материал электрода служит переносчиком электронов. Электрод отдает окислителю или принимает электроны от восстановителя в растворе. Окислительно-восстановительный потенциал, возникающий в таких системах, зависит от природы редокс-реакции и от концентрации обоих электроактивных соединений, а также от других веществ, например концентрации ионов водорода, и не зависит от материала электрода.

Измерение потенциала металла. Электрод сравнения. Непосредственно измерить абсолютную величину потенциала электрода в настоящее время не представляется возможным. Ее измеряют относительно величины другого электрода - электрода сравнения, потенциал которого принято считать постоянным при стандартных условиях.

В электрохимии принято в качестве электрода сравнения используют водородный электрод, потенциал которого условно принят за нуль. Он состоит из платиновой пластины, покрытой платиновой чернью и погруженной в раствор H2SO4, где [H+] = 1 моль/л, давление газообразного водорода 101,325 кПа, температура 25 оС.

На границе раздела фаз устанавливается равновесие:

1/2 Н2 + Н2О = Н3О+ + е

Схему водородного электрода обозначают так:

H+ ‌‌│ H2, Pt

Если составить электрическую цепь из водородного электрода и пластины металла, опущенную в раствор своей соли, где концентрация ионов металла равна 1 моль/л при стандартных условиях, то возникшая разность потенциалов электродвижущая сила (э.д.с.) будет являться величиной стандартного электродного потенциала металла (Е0).

Например: цинковая пластина опущена в 1-молярный раствор своей соли и соединена со стандартным водородным электродом:

схема: Zn │ Zn2+│ H2S4 │ H2, Pt (+)

В элементе осуществляется реакция:

Zn + 2H+ = Zn2+ + H2

Электроны по внешней цепи движутся от цинкового к водородному электроду. Стандартный электродный потенциал цинкового электрода равен -0,763 В.

Взяв в качестве электрода медь при тех же условиях в сочетании со стандартным водородным электродом, получим электрическую цепь из двух полуэлементов,которую можно изобразить в виде схемы:

(-) Pt, H2 │ H2SO4││ Cu2+ │ Cu (+)

Его э.д.с., а следовательно, и стандартный электродный потенциал (Е0) меди равны +0,34 В. В этом случае протекает реакция

Cu2+ + H2 = 2H+ + Cu,

а электроны во внешней цепи движутся от водородного электрода к медному.

Потенциал каждого электрода зависит от природы металла, концентрации его ионов в растворе и температуры. Эта зависимость выражается уравнением Нернста:

E = E0 + RT/nF ln C

или при температуре 298 К

E = E0 +0,059/n lg Cмет.

где R - универсальная газовая постоянная равная 8,31 Дж/моль К, Т - температура в Кельвинах, n - число электронов участвующих в реакции, F - постоянная Фарадея равная 96500 Кл, E0 – стандартное значение электродного потенциала, который равен электродному потенциалу при концентрации электроактивной частицы равной 1 моль/л.

Потенциал окислительно-восстановительной системы:

Ох + ne +z H+ ↔ Red

определяется аналогичным образом, а зависимость от концентрации обоих электроактивных соединений и концентрации ионов водорода выражается уравнением:

E=E0 +0,059/n lg (СОх СH+z)/СRed.

Ряд стандартных электродных потенциалов металлов (ряд напряжений). Располагая металлы в порядке возрастания алгебраической величины их стандартных электродных потенциалов (Е0) получают ряд стандартных электродных потенциалов металлов в водных растворах или ряд напряжений металлов. Ряд напряжений характеризует:

1.Чем меньше алгебраическая величина потенциала, тем выше восстановительная способность металла и тем ниже окислительная способность его ионов.

2.Каждый предыдущий металл, т. е. расположенный в ряду напряжения левее или имеющий меньший стандартный потенциал, вытесняет последующие металлы из водных растворов их солей. Например:

Mg + NiSO4=MgSO4 + Ni;

3.Все активные металлы, т.е. расположенные в ряду до водорода, вытесняют водород из кислот, где он выполняет функцию окислителя (HCl разб. и конц.; H2SO4 разб.).

2HCl + Zn = ZnCl2 + H2

4.Большой энергией гидратации иона Li(-515 кДж/г-ат) обусловливается высокоотрицательное значение его потенциала (Е0 = -3,045 B) в сравнении с Na, K и даже Cs (E0 = - 2,923 B). Это относится и к кальцию, который активнее в растворе, чем натрий.


Лекция 11. Химические источники тока

Электрохимия –естественнонаучная дисциплина, котораяизучает физико-химические свойства ионных растворов и расплавов, а также явления, которые протекают на границе раздела фаз с участием заряженных частиц.

Химические источники тока (ХИТ) – это устройства, в которых энергия химической реакции преобразуется в электрическую. В гальванических элементах могут использоваться только те реакции, которые идут самопроизвольно и для Δ G < 0.

При погружении цинковой пластинки в раствор сульфата меди самопроизвольно протекает реакция

Zn + CuSO4 = ZnSO4 + Cu

в результате, которой атомы цинка окисляются, а ионы меди восстанавливаются. При таком проведении процесса энергия химической реакции превращается в тепловую энергию, но если провести процессы окисления и восстановления раздельно и осуществить передачу электронов через внешнюю цепь, можно использовать энергию химической реакции для совершения работы. Активные вещества (окислители и восстановители) в совокупности с электролитом и электродами образуют электрохимическую систему (гальванический элемент (ГЭ)), которая условно изображается следующим образом:

(–) вещество (1)! электролит (1)!! электролит (2)! вещество (2) (+).

Электрохимическая реакция протекает на границе раздела фаз между электродом и электролитом.

Одним из наиболее простых ГЭ является элемент Даниэля–Якоби,состоящий из двух электродов – цинкового и медного, погруженных в соответствующие растворы сульфатов цинка и меди. Вся совокупность этих процессов выражается уравнением полуреакции:

Zn – 2 е – = Zn2+ Е 0 = –(–0,76) В

Cu2+ + 2 e – = Cu Е 0 = +0,34 В.

Общий процесс является суммой процессов, протекающих на отдельных электродах:

Zn + Cu2+ = Zn2+ + Cu.

Схематическое изображение элемента Даниэля–Якоби имеет вид

(–) Cu Zn! ZnSO4!! CuSO4! Cu (+).

Электрический ток, протекающий по внешней цепи ГЭ, может производить полезную работу (А), которая определяется произведением количества прошедшего по цепи электричества (Q = It, где I – ток; t – время) на напряжение (V), измеренное на концах гальванического элемента:

A = I t V.

Максимальное значение напряжения ГЭ, соответствующее обратимому протеканию реакции, называется электродвижущей силой (эдс – Δ Е), которая для элемента Даниэля–Якоби равна

Δ Е = 0,34 – (–0,76) = 1,1 В.

Между эдс (Δ Е) гальванического элемента и энергией Гиббса химической реакции имеется простая связь, которая выражается уравнением

–Δ G = nF Δ Е.

Компонентами сухого марганцово-цинкового элемента являются твердые вещества или влажные пасты, помещенные в плотно закрывающую их оболочку. Роль анода играет цинковая оболочка самого элемента. Вокруг угольного стержня, являющегося катодом, расположена паста, состоящая из MnO2, NH4Cl и H2O. На аноде происходит окисление цинка до Zn2+, а на катоде – восстановление MO2 до Mn3+, который образует смесь нескольких соединений. Схематическое изображение марганцево-цинкового элемента следующее:

(–)Zn NH4Cl, H2O MnO2(+);

анод: Zn – 2 e – = Zn2+ Е 0 = –(–0,76) В

катод: 2MnO2 + 8NH4+ + 2 e – = 2Mn3+ + 4H2O + 8NH3 Е 0 = +1,25 В,

Δ Е = +0,76 + 1,25 = 2,01 В.

ГЭ могут обладать свойством обратимости: это означает, что если к элементу приложить внешнее напряжение, которое превышает собственное напряжение элемента, то протекающие в нем реакции могут пойти в обратном направлении, и таким образом удается запасти в элементе электрическую энергию. ГЭ, работоспособность которых после разряда может быть восстановлена путем заряда, называются аккумуляторами. Обратимым является элемент Даниэля–Якоби. Для того чтобы элемент можно было перезарядить, электродные продукты должны оставаться вблизи электродов и допускать обратное превращение при зарядке элемента.

Примером такого элемента является свинцовый аккумулятор, который схематически изображается следующим образом: (–)Pb!H2SO4!! PbO2(+) В качестве анода в нем используется пластина из пористого свинца, который окисляется в сульфат свинца, Аналогично при восстановлении на катоде оксида свинца в сульфат свинца продукт восстановления остается на месте.

анод: Pb – 2 e – = Pb2+ Е 0 = –(–0,13) В;

катод: PbO2 + 2 e – + 4H+ + SO42- = PbSO4 + 2H2O Е 0 = +1,69 В;

Δ Е = 1,69 – (–0,13) = 1,82 В.

Если последовательно соединить несколько таких элементов, получатся аккумуляторные батареи, дающие напряжение 6 или 12 В.

После того как произойдет разрядка свинцового аккумулятора, его можно перезарядить, в результате чего сульфат свинца превращается в свинец и оксид свинца.

Топливные ХИТ в своей работе преобразуют химическую энергию реакции горения какого-то вещества в кислороде в электрическую, например

2H2 +O2 = 2H2O.

Газообразный кислород и водород пропускается у соответствующих электродов, а в качестве электролита используется раствор гидроксида калия.

 

 
 

Лекция 12. Электролиз


Электролизом называются процессы окисления и восстановления веществ, происходящие на поверхности электродов под действием электрического тока. При электролизе происходит превращение электрической энергии в химическую, т.е. под действием электрического тока происходит превращение одних веществ в другие. Под действием электрического тока катионы движутся к отрицательному, а анионы к положительному электроду.

Электрод, на котором идет процесс присоединения электронов ионами, т.е. процесс восстановления, называется катодом, и он имеет заряд (–). Электрод, на котором идет процесс отдачи электронов веществом, т.е. процесс окисления, называется анодом, и он имеет заряд (+), т.е. распределение знаков заряда электродов противоположно тому, которое имеется при работе гальванического элемента.

Протекание электрического тока через раствор и электроды приводит к тому, что потенциал последних изменяет свое значение по сравнению с равновесным, определяемым уравнением Нернста. Отклонение от равновесного потенциала обусловлено необходимостью затраты энергии на совершение окислительно-восстановительных реакций. Разность между потенциалом электрода без тока и под током получило название поляризация. Поляризация может быть связана с изменением концентрации разряжающихся частиц и с замедленностью присоединения или отдачи электронов.

На процесс электролиза и характер конечных продуктов большое влияние оказывают различные факторы в том числе: 1) природа растворителя;
2) материал электродов; 3) величина тока, приходящего на единицу поверхности электрода, т.е. от плотности тока на электродах; 4) состав раствора и его концентрация.

При электролизе расплавов на катоде происходит выделение металла (Na+ + e → Na), а на аноде – галогена (2Cl → Cl2 + 2 e).

При рассмотрении электролиза водных растворов необходимо учитывать наличие молекул воды и ионов OH и H+, которые могут участвовать в реакциях на электродах.

Реакции на катоде. На катоде в первую очередь протекает реакция восстановления тех ионов или молекул, которые имеют наибольшую величину стандартного электродного потенциала. Для процесса катодного восстановления металлов из водного раствора все металлы можно разделить на три группы.

1 группа. Катионы металлов, имеющих больший стандартный электродный потенциал, чем у водорода. На катоде указанные ионы разряжаются в первую очередь, а разряд ионов H+ не проходит.

2 группа. Ионы металлов, потенциал которых отрицательнее стандартного потенциала водородного электрода, но больше стандартного потенциала марганца, включительно. В данном случае на катоде одновременно будут восстанавливаться и катион металла, и водород:

Mez 2+ + ze ® Me 0;

+ + 2 e ® H2 или 2H2O + 2 e ®2OH + H2.

3 группа. Ионы металлов, потенциал которых более отрицателен, чем стандартный потенциал марганцевого электрода. В водных растворах разряд этих ионов на катоде не происходит, т.к. на катоде восстанавливаются ионы водорода или молекулы воды:

+ + 2 e ® H2 или 2H2O + 2 e ®2OH + H2.

Металлы этой группы могут быть получены лишь электролизом их расплавленных солей.

Если же водный раствор содержит катионы различных металлов, то при электролизе выделение их на катоде протекает в порядке уменьшения величины электродного потенциала соответствующего металла. Так, из смеси катионов Ag+, Cu2+, Fe2+ сначала будут восстанавливаться катионы серебра, затем катионы меди и последними – катионы железа.

На аноде протекают процессы окисления. При электролизе растворов используются нерастворимые (графитовые, платиновые, иридиевые) и растворимые аноды (из цинка, никеля, серебра, меди и других металлов).

Материал анода является нерастворимым в водном растворе в том случае, когда его стандартный окислительно-восстановительный потенциал больше нормального потенциала следующих реакций:

2H2O «4H+ + O2 + 4 e, 2OH «2H+ + O2 + 4 е,

или анод покрыт пленкой нерастворимой соли или оксида.

На нерастворимом аноде в процессе электролиза происходит окисление анионов или молекул воды. При этом анионы бескислородных кислот (S2–, I, Br, Cl) при их достаточной концентрации легко окисляются до элементарного состояния, например: 2Cl ® Cl2 + 2 e.

Если же раствор содержит анионы SO42–, NO3, CO32–, PO43–, F, то на аноде окисляются не эти анионы, а молекулы воды или ионы гидроксида с выделением кислорода по следующим реакциям:

2H2O ® 4H+ + O2 + 4 e или 2OH ® 2H+ + O2 + 4 е.

В случае растворимого анода число конкурирующих окислительных процессов возрастает до трех: электрохимическое окисление воды с выделением кислорода, разряд аниона и электрохимическое окисление металла анода (так называемое анодное растворение металла). Из этих возможных процессов будет идти тот, который энергетически наиболее выгоден. Если стандартный потенциал металла – анода имеет меньший потенциал, чем стандартный потенциал последних трех реакций, то будет наблюдаться анодное растворение металла, например: Cu0 ® Cu2+ + 2 e.

В случае применения растворимых анодов уменьшение концентрации катионов металла в растворе при их восстановлении на катоде восполняется за счет растворения анодов. Электролиз с растворимым анодом применяется для очистки металлов (рафинирование) от примесей.

Законы электролиза. С количественной стороны процесс электролиза был впервые изучен в 30-х гг. XIX в. Фарадеем, который установил на опыте два основных закона электролиза:

Первый закон Фарадея. Количество вещества, восстановленного на катоде или окисленного на аноде, прямо пропорционально количеству пропущенного электричества:

m = k Q = k I t,

где m – масса вещества; Q – количество пропущенного электричества (Кл,
1 Кл = 1 А с)); I – сила тока; t – время электролиза; k – постоянная, различная для разных веществ. Численно она равна массе данного вещества, выделяемого при пропускании заряда, равного одному Кулону. В электрохимии данная постоянная носит название электрохимического эквивалента, которая пропорциональны молярной (М) или атомной (А) массе вещества, и обратно пропорциональна количеству электронов, принимающих участие в реакции на электроде (z).

Второй закон Фарадея касается величины электрохимического эквивалента.

Если пропустить одно и то же количество электричества через две или больше гальванических ванн, то отношение масс веществ, выделившийся на электродах, к их химическим эквивалентам есть величина постоянная:

m 1 / m э1 = m 2 / m э2 = m 3 / m э3 = const.

Из данного уравнения следует, что для выделения одной эквивалентой массы любого вещества необходимо пропустить всегда одно и то же количество электричества, а именно 96500 Кл (постоянной Фарадея (F)). Поскольку один моль одновалентного вещества содержит 6,02∙1023 молекул (атомов), то постоянная Фарадея определяется по уравнению F = NA e (где е – заряд электрона равный 1,6022∙10–19 Кл). Электрохимический эквивалент вещества определяется по следующему уравнению:

k = A / (z F).

Таким образом, второй закон Фарадея формулируется следующим образом: при прохождении равного количества электричества через различные электролиты количества различных веществ, испытывающих превращение у электродов, пропорциональны химическим эквивалентам этих веществ.

Объединив первый и второй законы Фарадея, получим математическое уравнение

m = AQ / zF = AIt / zF.

Если на электроде протекает две и более реакции, последнее уравнение не соблюдается. Для соблюдения приведенных уравнений в электрохимии введено понятие «выход по току» (Вт), которое определяет долю общего тока, расходуемого на осуществление данной реакции. Таким образом, математическое выражение, объединяющее первый и второй законы Фарадея с учетом протекания на электроде нескольких реакций, запишется следующим образом:

m = Вт A . Q / z.F = Вт A.I.t / z.F.

Электролиз применяется при получении как неорганических (хлора, фтора, щелочи, натрия, алюминия), так и органических продуктов при нанесении гальванических покр



Поделиться:


Последнее изменение этой страницы: 2016-12-13; просмотров: 576; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.108.241 (0.171 с.)