Предметом физиологической акустики и является сам орган слуха, его устройство и действие. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Предметом физиологической акустики и является сам орган слуха, его устройство и действие.



Реферат

 

по физике

 

на тему:

" Звуковые волны "

 

 

Исполнитель: студент 1 курса

ГАОУ СПО Елабужского ПК

Мухамадиев Айнур.

Содержание

Введение...................................3

Историческая справка.............5

Основные понятия акустики..9

Звуковые частоты............................9

Звуковые явления...............................9

Свойства звука................................11

Скорость распространения звука..14

Музыкальная акустика……………...15

Резонанс в акустике........................17

Анализ и синтез звука.....................19

Эффект Доплера в акустике.........20

Звуковые удары................................20

Шумы.................................................22

Ультразвуки и инфразвуки..............22

Применение звуковых волн....24

Звукозапись и фонограф Эдисона.24

Звуолокация....................................25

Применение ультра и инфразвуков………………………………..26

Ультразвуковая обработка...........27

Введение

Мир, окружающий нас, можно назвать миром звуков. Звучат вокруг нас голоса людей и музыка, шум ветра и щебет птиц, рокот моторов и шелест листвы. С помощью речи люди общаются, с помощью слуха получают информацию об окружающем мире. Не меньшее значение звук имеет для животных. С точки зрения физики, звук - это механические колебания, которые распро­страняются в упругой среде: воздухе, воде, твёрдом теле и т.п.

Способность человека воспринимать упругие колебания, слу­шать их отразились в названии учения о звуке - акустика (от греческого akustikos - слуховой, слышимый). Вообще человече­ское ухо слышит звук только тогда, когда на слуховой аппарат уха действуют механические колебания с частотой не ниже 16 Гц но не выше 20 000 Гц. Колебания же с более низкими или с более высокими частотами для человеческого уха неслышимы.

Вопросы, которыми занимается акустика, очень разнооб­разны. Некоторые из них связаны со свойствами и особенностями нашего слуха.

Предметом физиологической акустики и является сам орган слуха, его устройство и действие.

Архитектурная акустика изучает распространение звука в помещениях, влияние на звук размеров и формы помещений, свойств материалов, покрывающих стены и потолки, и т.д. При этом опять имеется в виду слуховое восприятие звука.

Музыкальная акустика исследует музыкальные инструменты и условия их наилучшего звучания.

Физическая акустика занимается изучением самих звуковых колебаний, а за последнее время охватила и колебания, лежащие за пределами слышимости (ультраакустика). Она широко исполь­зует разнообразные методы для превращения механических коле­баний в электрические и обратно (электроакустика).

Применительно к звуковым колебаниям в число задач физиче­ской акустики входит и выяснение физических явлений, обуслов­ливающих те или иные качества звука, различаемые на слух.

Историческая справка

Звуки начали изучать ещё в далёкой древности. Первые на­блюдения по акустики были проведены в VI веке до нашей эры. Пифагор установил связь между высотой тона и длиной струны или трубы издавающей звук.

В IV в. до н.э. Аристотель первый правильно представил, как распространяется звук в воздухе. Он сказал, что звучащее тело вызывает сжатие и разрежение воздуха и объяснил эхо отражением звука от препятствий.

В XV веке Леонардо да Винчи сформулировал принцип незави­симости звуковых волн от различных источников.

В 1660 году в опытах Роберта Бойля было доказано, что воздух является проводником звука (в вакууме звук не распро­страняется).

В 1700 - 1707 гг. вышли вышли мемуары Жозефа Савёра по акустике, опубликованные Парижской Академией наук. В этих мемуарах Савёр рассматривает явление, хорошо известное конст­рукторам органов: если две трубы органа издают одновременно два звука, лишь немного отличающиеся по высоте, то слышны периодические усиления звука, подобные барабанной дроби. Савёр объяснил это явление периодическим совпадением колеба­ний обоих звуков. Если, например, один из двух звуков соот­ветствует 32 колебаниям в секунду, а другой - 40 колебаниям, то конец четвёртого колебания первого звука совпадает с концом пятого колебания второго звука и, таким образом проис­ходит усиление звука. От органных труб Савёр перешёл к экcпи­рементальному исследованию колебаний струны, наблюдая узлы и пучности колебаний (эти названия, существующие и до сих пор в науке, введены им), а также заметил, что при возбуждении струны наряду с основной нотой звучат и другие ноты, длина волны которых составляет 1/2, 1/3, 1/4,... от основной. Он назвал эти ноты высшими гармоническими тонами, и этому назва­нию суждено было остаться в науке. Наконец, Савёр первый пытался определить границу восприятия колебаний как звуков: для низких звуков он указал границу в 25 колебаний в секунду, а для высоких - 12 800.

За тем, Ньютон, основываясь на этих экспериментальных ра­ботах Савёра, дал первый расчет длины волны звука и пришел к выводу, хорошо известному сейчас в физике, что для любой открытой трубы длина волны испускаемого звука равна удвоенной длине трубы. "И в этом состоят главнейшие звуковые явления".

После экспериментальных исследований Савёра к математиче­скому рассмотрению задачи о колеблющейся струне в 1715 г. приступил английский математик Брук Тейлор, положив этим начало математической физике в собственном смысле слова. Ему удалось рассчитать зависимость числа колебаний струны от её длины, веса, натяжения и местного значения ускорения силы тяжести. Эта задача сразу же стала широко известна и при­влекла внимание почти всех математиков XVIII века, вызвав долгую и плодотворную дискуссию. Ею занимались среди прочих Иоганн Бернулли и его сын Даниил Бернулли, Риккати и Даламбер. Последний нашел уравнения в частных производных, определяющие малые колебания однородной струны, и проинтегри­ровал их методом, применяемым и поныне. Но наиболее существенный вклад внес Эйлер. Ему мы обязаны полной теорией колебаний струны, начало построению которой было положено в 1739 году в его труде "Опыт новой теории музыки" и продолжа­лось в многочисленных последующих докладах. В частности, из теории Эйлера вытекало, что скорость распространения волны по струне не зависит от длины волны возбуждаемого звука. Эйлер производил также теоретические исследования колебаний стерж­ней, колец, колоколов, но полученные результаты не совпали с результатами экспериментальной проверки, предприня­той немецким физиком Эрнестом Флоресом Фридрихом Хладни, которого считают отцом экспериментальной акустики. Хладни первым точно исследовал колебания камертона и в 1796 году установил законы колебаний стержней.

Фактическое объяснение эха, явления довольно капризного, также принадлежит Хладни, по крайней мере в существенных частях. Ему мы обязаны и новым экспериментальным определением верхней границы слышимости звука, соответствующей 20 000 колебаний в секунду. Эти измерения, многократно повторяемые физиками до сих пор, весьма субъективны и зависят от интен­сивности и характера звука. Но особенно известны опыты Хладни в 1787 году по исследованию колебаний пластин, при которых образуются красивые "акустические фигуры", носящие названия фигур Хладни и получающиеся, если посыпать колеблющуюся пластинку песком. Эти экспериментальные исследования поста­вили новую задачу математической физики - задачу о колебаниях мембраны.

Хладни начал исследования продольных волн в твердых телах и сопоставил продольные и поперечные колебания стержня при различных способах возбуждения (ударом, трением и др.). Исследование продольных волн были продолжены экспериментально Саваром, а теоретически - Лапласом и Пуассоном.

В XVIII веке было исследовано много других акустических явлений (скорость распространения звука в твердых телах и в газах, резонанс, комбинационные тона и др.). Все они объясня­лись движением частей колеблющегося тела и частиц среды, в которой распространяется звук. Иными словами, все акустиче­ские явления объяснялись как механические процессы.

В 1787 году Хладни, основоположник экспериментальной аку­стики открыл продольные колебания струн, пластин, камертонов и колоколов. Он первый достаточно точно измерил скорость распространения звуковых волн в различных газах. Доказал, что в твёрдых телах звук распространяется не мгновенно, а с конечной скоростью, и в 1796 году определил скорость звуковых волн в твёрдых телах по отношению звука в воздухе. Он изобрёл ряд музыкальных инструментов. В 1802 году вышел труд Эрнеста Хладни "Акустика", где он дал систематическое изложение акустики.

В 1877 году американский учёный Томас Алва Эдисон изобрёл устройство для записи и воспроизведения звука, который потом сам же в 1889 году усовершенствовал. Изобретённый им способ звукозаписи получил название механического.

В 1880 году французские учёные братья Пьер и Поль Кюри сделали открытие, которое оказалось очень важным для аку­стики. Они обнаружили, что, если кристалл кварца сжать с двух сторон, то на гранях кристалла появляются электрические заряды. Это свойство - пьезоэлектрический эффект - для обна­ружения не слышимого человеком ультразвука. И наоборот, Если к граням кристалла приложить переменное электрическое напря­жение, то он начнёт колебаться, сжимаясь и разжимаясь.

 

Основные понятия акустики

Звуковые частоты

Колебания упругой пластинки, зажатой в тисках, имеют тем более высокую частоту, чем короче свободный колеблющийся конец пластинки. Когда частота колебаний делается выше чем 16 Гц, мы начинаем слышать колебания этой пластинки.

Таким образом, звук обусловливается механическими коле­ба­ниями в упругих средах и телах (твёрдых, жидких и газооб­раз­ных), но не в вакууме.

То, что воздух - проводник звука, было доказано постав­ленным опытом Роберта Бойля в 1660 году. Если звучащее тело, например электрический звонок, поставить под колокол воздуш­ного насоса, то по мере откачивания из под него воздуха - звук будет делаться слабее, и наконец, когда под колоколом весь воздух кончится, то звук прекратится.

При своих колебаниях тело попеременно то сжимает слой воздуха, прилегающий к его поверхности, то, наоборот, создаёт разрежение в этом слое. Таким образом, распространение звука в воздухе начинается с колебаний плотности воздуха у поверх­ности колеблющегося тела.

 

Звуковые явления.

Свойства звука.

Ощущение звука вызывается звуковыми волнами, достигающими органа слуха - уха. Важнейшая часть этого органа - барабанная перепонка. Пришедшая к ней звуковая волна вызывает вынужден­ные колебания барабанной перепонки с частотой колебаний в волне. Они воспринимаются мозгом как звук.

Звуки бывают разные. Мы легко различаем свист и дробь ба­рабана, мужской голос (бас) от женского (сопрано).

Об одних звуках говорят, что они низкого тона, другие мы называем звуками высокого тона. Ухо их легко различает. Звук, создаваемый большим барабаном, это звук низкого тона, свист - звук высокого тона. Простые измерения (развертка колебаний) показывают, что звуки низких тонов - это колебания малой частоты в звуковой волне. Звуку высокого тона соответствует большая частота колебаний. Частота колебаний в звуковой волне определяет тон звука.

Существуют особые источники звука, испускающие единствен­ную частоту, так называемый чистый тон. Это камертоны различ­ных размеров - простые устройства, представляющие собой изогнутые металлические стержни на ножках. Чем больше размеры камертона, тем ниже звук, который он испускает при ударе по нему.

Если взять несколько камертонов разного размера, то не представит труда расположить их на слух в порядке возрастания высоты звука. Тем самым они окажутся расположенными и по размеру: самый большой камертон даёт низкий звук, а маленький - наиболее высокий.

Звуки даже одного тона могут быть разной громкости. Гром­кость звука связана с энергией колебаний в источнике и в волне. Энергия же колебаний определяется амплитудой колеба­ний. Громкость, следовательно, зависит от амплитуды колеба­ний. Но связь между громкостью звука и амплитудой колебаний не простая.

Самый слабый ещё слышимый звук, дошедший до барабанной перепонки, приносит в 1 секунду энергию, равную примерно 10-16 Дж, а самый громкий звук (звук реактивного ракетного двигателя в нескольких метрах от него) - около 10-4 Дж. Следовательно, по мощности самый громкий звук примерно в тысячу миллиардов раз превосходит самый слабый.

Интенсивности звука при слуховом восприятии соответствует ощущение громкости звука. При определенной минимальной интен­сивности человеческое ухо не воспринимает звука. Эта мини­мальная интенсивность называется порогом слышимости. Порог слышимости имеет различные значения для различных частот. При больших интенсивностях ухо испытывает болевое ощущение. Наибольшая интенсивность при болевом восприятии звука называ­ется порогом болевого ощущения.

Уровень интенсивности звука определяется в децибелах (дБ). Например, громкость звука, шороха листьев оценивается в 10 дБ, шёпота - 20 дБ, уличного шума - 70 дБ. Шум громкостью 130 дБ ощущается кожей и вызывает ощущение боли.

В том, что распространение звуковых волн происходит не мгновенно, можно увидеть из простейших наблюдений. Если в дали происходит гроза, выстрел, взрыв, свисток паровоза, удар топором и т.п., то сначала все эти явления видно, а только потом, спустя некоторое время, слышен звук.

Как и всякая волна, звуковая волна характеризуется скоростью распространения колебаний в ней. Скорость распро­странения фазы волны в упругой среде жидкости или газа зави­сит от сжимаемости и плотности этой среды. В жидкостях и газах звук распространяется с постоянным давлением и его скорость пропорциональна корню квадратному из абсолютной температуры газа T. В сухом воздухе, содержащим 0,03 угле­рода, при температуре 0 0C скорость звука равна 331,5 м/с, а с повышением температуры увеличивается:

____

 =  T,

где 1/273 - коэффициент расширения газа. В воде звук распространяется примерно в 4,25 раза быстрее, чем в воз­духе, а в твёрдых телах - ещё быстрее (около 5 103 - 6 103 м/с).

С длиной волны и частотой колебаний скорость звуко­вой волны связана формулой:

.

Скорость звука различна в разных средах. Например в водо­роде скорость распространения звуковых волн любой длины равна 1284 м/c, в резине - 1800 м/с, а в железе - 5850 м/c.

Музыкальная акустика.

Реальный звук является наложением гармонических колебаний с набором частот, который определяет акустический спектр звуковой волны. Различают три вида звуковых колебаний: музы­кальные звуки, звуковые удары и шумы. Периодические колебания определённой частоты вызывают простой музыкальный тон. Слож­ные музыкальные звуки - это сочетания отдельных тонов. Тон, соответствующий наименьшей частоте сложного музыкального звука, называют основным тоном, а остальные тоны - оберто­нами. Если частота обертона кратна частоте основного тона, то обертон называют гармоническим. При этом основной тон с минимальной частотой0называют первой гармоникой, обер­тон, с частотой - второй гармоникой и т.д.

Относительная интенсивность, звуковой волны а так же ха­рактер нарастания и спада их амплитуд во время затухания, определяют окраску (или тембр) звука. Различные музыкальные инструменты (рояль, скрипка флейта и т.п.) отличаются тем­бром издаваемых этими инструментами звуков. Совокупность звуков разной высоты которыми пользуются в музыке, составляет музыкальный строй. Относительный музыкальный строй состоит из звуков, находящихся в определённых соотношениях. Если звуки музыкального строя заданы высотой исходного тона, с которого начинается настройка инструментов, то такой строй называют абсолютным. Исходный (стандартный) тон в европейском абсолют­ном музыкальном строе равен 440 Гц (звук "ля" первой октавы). Относительное различие в высоте двух тонов, обусловленное соотношением между частотами этих тонов, называют интервалом. Соотношение частот 2: 1 определяет октаву, 5: 4 - большую терцию, 4: 3 - кварту, 3: 2 - квинту.

Если длина струны гитары равна L, то возникшая волна должна пройти путь 2L, чтобы вернуться в исходное положение, имея исходное направление движения и исходную форму после двух отражений от обоих концов. Если - скорость волны, то расстояние 2L волна будет пробегать   раз в секунду, причём





2L

Частота   это высота тона струны. Если прижать пальцем струну к грифу гитары, положив палец на лад, который ускорит свободную часть струны в 2 раза, то и высота тона удвоится. Нота повысится на октаву, что соответствует удвоению частоты.

Отношение высот полутонов равно корню двенадцатой степени из двух. Этим и определяется расположение ладов на грифе гитары. Отношение расстояний L1 и L2 от подставки на деке до любых двух соседних тонов на грифе гитары равно

L2 12 _

 =  = 0,05946

L1

В принятой европейской музыкальной практике октава де­лится на 12 равных интервалов, которые составляют равномерно темперированный строй. Отношение частот последовательных полутонов

12___

n: n+1 = : 1

Кроме темперированного строя различают два точных строя - пифагорейский и чистый, в основе которых лежат интервалы, частотные коэффициенты которых представляют собой отношения первых соседних чисел натурального ряда. Пифагорейский строй основан на октаве и чистой квинте с частотным коэффициентом 3: 2, а чистый строй - на октаве, квинте и большой терции с частотным коэффициентом 5: 4. Пифагорейский строй более выразительно передаёт мелодию, а чистый лучше соответствует аккордовой музыке. Для исполнения сложной музыки используют компромиссно темперированные строи и равномерно-темперирован­ный 12-ступенчатый музыкальный строй.

Резонанс в акустике.

Звуковые колебания, приносимые звуковой волной, могут служить вынуждающей, периодически изменяющейся силой для колебательных систем и вызывать в этих системах явление резонанса, т.е. заставить их звучать. Такой резонанс называ­ется акустическим резонансом. Резонансные явления можно наблюдать на механических колебаниях любой частоты. Т.к. камертон сам по себе даёт очень слабый звук, потому, что площадь поверхности колеблющихся ветвей камертона, соприка­сающихся с воздухом, очень мала и в колебательное движение приходит слишком мало частиц воздуха, то камертон обычно укрепляют на деревянном ящике, подобранном так чтобы частота его собственных колебаний была равна частоте звука, создавае­мого камертоном. Ящики усиливают звук, вследствие резонанса между камертоном и столбом воздуха, заключённого в ящике. Этот ящик с камертоном называется резонатором или резонансным ящиком.

Пример акустического резонанса можно наблюдать в следую­щем опыте. Роль ящиков в этом опыте чисто вспомогательная.

Поставим рядом два одинаковых камертона, обратив отвер­стия ящиков, на которых они укреплены, друг к другу. Ударим один из камертонов и затем приглушим его пальцами. Мы услы­шим, как звучит второй камертон.

Анализ и синтез звука.

При помощи наборов акустических резонаторов можно устано­вить, какие тоны входят в состав данного звука и с какими амплитудами они присутствуют в данном звуке. Такое установле­ние гармонического спектра сложного звука называется его гармоническим анализом. Раньше такой анализ действительно производился с помощью наборов резонаторов, в частности резонаторов Гельмгольца, представляющих собой полые шары разного размера, снабженные отростком, вставляющимся в ухо, и имеющие отверстие с противоположной стороны.

Эффект Доплера в акустике.

Частота звуковых колебаний, которые слышит неподвижный наблюдатель в случае, если источник звука приближается или удаляется от него, отлична от частоты звука, воспринимаемой наблюдателем, который движется вместе с этим источником звука, или и наблюдатель и источник звука стоят на месте. Изменение частоты звуковых колебаний (высоты звука), связанное с относительным движением источника и наблюдателя называется акустическим эффектом Доплера. Когда источник и приемник звука сближаются, то высота звука повышается, а если они удаляются. то высота звука понижается. Это связано с тем, что при движении источника звука относительно среды, в кото­рой распространяются звуковые волны, скорость такого движения векторно складывается со скоростью распространения звука.

Например, если машина с включенной сиреной приближается, а затем, проехав мимо, удаляется, то сначала слышен звук высокого тона, а затем низкого.

Звуковые удары

Ударные волны возникают при выстреле, взрыве, электриче­ском разряде и т.п. Основной особенностью ударной волны является резкий скачок давления на фронте волны. В момент прохождения ударной волны максимум давления в данной точке возникает практически мгновенно за время порядка 10-10 с. При этом одновременно скачком изменяются плотность и темпера­тура среды. Затем давление медленно падает. Мощность ударной волны зависит от силы взрыва. Скорость распространения удар­ных волн может быть больше скорости звука в данной среде. Если, например, ударная волна увеличивает давление в полтора раза, то при этом температура повышается на 35 0С и скорость распространения фронта такой волны примерно равна 400 м/с. Стены средней толщины, которые встречаются на пути такой ударной волны будут разрушены.

Мощные взрывы будут сопровождаться ударными волнами, ко­торые создают в максимальной фазе фронта волны давление, в 10 раз превышающее атмосферное. При этом плотность среды увели­чивается в 4 раза, температура повышается на 500 0C, и ско­рость распространения такой волны близка к 1 км/с. Толщина фронта ударной волны имеет порядок длины свободного пробега молекул (10-7 - 10-8 м), поэтому при теоретическом рассмотрении можно считать, что фронт ударной волны представляет собой поверхность взрыва, при переходе через которую параметры газа изменяются скачком.

Ударные волны так же возникают, когда твёрдое тело дви­жется со скоростью, превышающей скорость звука. Перед самолё­том, который летит со сверхзвуковой скоростью, образуется ударная волна, которая является основным фактором, определяю­щим сопротивление движению самолёта. Чтобы это сопротивление ослабить, сверхзвуковым самолётам придают стреловидную форму.

Быстрое сжатие воздуха перед движущимся с большой скоростью предметом приводит к повышению температуры, которая с нарастанием скорости предмета - увеличивается. Когда ско­рость самолёта достигает скорость звука, температура воздуха достигает 60 0C. При скорости движения вдвое выше скорости звука, температура повышается на 240 0C, а при скорости, близкой к тройной скорости звука - становится 800 0С. Скорости близкие к 10 км/с приводят к плавлению и превращению движущегося тела в газообразное состояние. Падение метеоритов со скоростью в несколько десятков километров в секунду приво­дит к тому, что уже на высоте 150 - 200 километров, даже в разрежённой атмосфере метеоритные тела заметно нагреваются и светятся. Большинство из них на высотах 100 - 60 километров полностью распадаются.

Шумы.

Наложение большого количества колебаний беспорядочно сме­шанных одно относительно другого и произвольно изменяющих интенсивность во времени, приводят к сложной форме колебаний. Такие сложные колебания, состоящие из большого числа простых звуков различной тональности, называют шумами. Примерами могут служить шелест листьев в лесу, грохот водопада, шум на улице города. К шумам также можно отнести звуки, выражаемые согласными. Шумы могут отличатся распределением по силе звука, по частоте и продолжительности звучания во времени. Длительное время звучат шумы, создаваемые ветром, падающей воды, морским прибоем. Относительно кратковременны раскаты грома, рокот волн - это низкочастотные шумы. Механические шумы могут вызываться вибрацией твёрдых тел. Возникающие при лопании пузырьков и полостей в жидкости звуки, которые сопро­вождают процессы кавитации, приводят к кавитационным шумам.

В прикладной акустике изучение шумов проводится в связи с проблемой борьбы с их вредностью, для усовершенствования шумопеленгаторов в гидроакустике, а также для повышения точности измерений в аналоговых и цифровых устройствах обра­ботки информации. Продолжительные сильные шумы (порядка 90 дБ и более) оказывают вредное действие на нервную систему чело­века, шум морского прибоя или леса - успокаивающее.

Ультразвуки и инфразвуки.

Сейчас акустика, как область физики рассматривает более широкий спектр упругих колебаний - от самых низких до пре­дельно высоких, вплоть до 1012 - 1013 Гц. Не слышимые челове­ком звуковые волны с частотами ниже 16 Гц называют инфразву­ком, звуковые волны с частотами от 20 000 Гц до 109Гц - ультразвуком, а колебания с частотами выше чем 109Гц называют гиперзвуком.

Ультразвуки могут издавать и воспринимать такие животные, как собаки, кошки, дельфины, муравьи, летучие мыши и др. Летучие мыши во время полёта издают короткие звуки высокого тона. В своём полёте они руководствуются отражениями этих звуков от предметов, встречающихся на пути; они могут даже ловить насекомых, руководствуясь только эхом от своей мелкой добычи. Кошки и собаки могут слышать очень высокие свистящие звуки (ультразвуки).

Проведённые наблюдения показали, что муравьи так же из­дают ультразвуковые сигналы с разными частотами в разных ситуациях. Все записанные эти муравьиные звуковые сигналы можно разделить на три группы: "сигнал бедствия", "сигнал агрессии" (во время борьбы) и "пищевые сигналы". Эти сигналы представляют собой кратковременные импульсы, длительностью от 10 до 100 микросекунд. Муравьи издают звуки в сравнительно широком диапазоне частот - от 0,3 до 5 килогерц.

Применение звуковых волн

Звуколокация.

На явлении эхо основан метод определения расстояний до различных предметов и обнаружения их месторасположений. Допустим, что каким-нибудь источником звука испущен звуковой сигнал и зафиксирован момент его испускания. Звук встретил какое-то препятствие, отразился от него, вернулся и был принят приёмником звука. Если при этом был измерен промежуток времени между моментами испускания и приёма, то легко найти и расстояние до препятствия. За измеренное время t звук прошёл расстояние 2s, где s - это расстояние до препятствия, а 2s - расстояние от источника звука до препятствия и от препятствия до приёмника звука. Если скорость звука известна, то можно написать:

2s t

t = -------, или s = -------.

2

По этой формуле можно найти расстояние до отражателя сиг­нала. Но ведь надо ещё знать, где он находится, в каком направлении от источника сигнал встретил его. Между тем звук распространяется по всем направлениям, и отраженный сигнал мог прийти с разных сторон. Чтобы избежать этой трудности используют не обычный звук, а ультразвук.

Ультразвуковые волны по своей природе такие же, как обычные зву­ковые волны, но не воспринимаются человеком как звук. Это объясняется тем, что частота колебаний в них больше, чем 20 000 Гц. Такие волны наблюдаются в природе. Есть даже такие живые существа, способные их испускать и принимать. Ультра­звуковые волны и притом большой мощности можно создавать с помощью электрических и магнитных методов.

Главная особенность ультразвуковых волн состоит в том, что их можно сделать направленными, распространяющимися по определённому направлению от источника. Благодаря этому по отражению ультразвука можно не только найти расстояние, но и узнать, где находится тот предмет, который их отразил. Так можно, например, измерять глубину моря под кораблем.

Звуколокаторы позволяют об­наруживать и определять местоположение различных повреждений в изделиях, например пустоты, трещины, постороннего включения и др. В медицине ультразвук используют для обнаружения различных аномалий в теле больного - опухолей, искажений формы органов или их частей и т.д. Чем короче длина ультра­звуковой волны, тем меньше размеры обнаруживаемых деталей. Ультразвук используется также для лечения некоторых болезней.

Взаимодействие сильного ветра и морских волн создаёт сильные инфразвуковые волны, которые распространяются со скоростью звука, т.е. значительно быстрее циклона. Они бегут по морским волнам, усиливаясь. Этот инфразвук может служить ранним предвестником бури, шторма или циклона.

Ультразвуковым волнам было найдено больше применения во многих областях человеческой деятельности: в промышленности, в медицине, в быту, ультразвук использовали для бурения нефтяных скважин и т.д. От искусственных источников можно получить ультразвук интенсивностью в несколько сотен Вт/см2.

Ультразвуковая обработка.

Ультразвуковые волны так же используют в станках для об­работки хрупких и твёрдых материалов.

Основа станка - преобразователь энергии высокочастотных колебаний электрического тока. Ток поступает на обмотку преобразователя от электронного генератора и превращается в энергию механических (ультразвуковых) колебаний той же час­тоты. К преобразователю присоединён специальный волновод, который, увеличивая амплитуду колебаний, передаёт их к инст­рументу такой формы, какой нужно получить отверстие. Инструмент прижимают к материалу, в котором надо получить отверстие, а к месту обработки подводят зёрна абразива размером меньше 100 мкм, смешанные с водой. Эти зёрна попадают между инструментом и материалом, и инструмент, как отбойный молоток, вбивает их в материал. Если материал хрупкий, то зёрна абразива откалы­вают от него микрочастицы размером 1 - 5 мкм. Но это не так мало! Частиц абразива под инструментом сотни и инструмент наносит более 20 000 ударов в одну секунду, поэтому процесс обработки проходит достаточно быстро, и отверстие диаметром 20 - 30 мм в стекле толщиной 10 - 15 мм можно сделать примерно за одну минуту.

Библиография

М.: Рус. яз., 1987.

Вилли К.

Биология.-

М.: Мир, 1968.

Справочник по физике. -

Киев: Наукова думка, 1986.

Кикоин И.К., Кикоин А.К.

Кошкин Н. И., Ширкевич М.Г.

Е изд., М.: Наука, 1988.

Льоццы М.

История физики. -

М.: Мир, 1970.

Мясников Л.Л.

Неслышимый звук.

Пирс Дж.

Почти всё о волнах.-

М.: Мир, 1976.

Разговор муравьёв.

"Наука и жизнь", 1978, No.1, стр. 141

Храмов Ю. А.

Е изд. - М.: Наука, 1983.

12. Элементарный учебник физики:

Учеб. пособие. В 3 т. / Под ред. Г.С. Ландсберга:

Физика.

Е изд., М.: Педагогика, 1987.

 

Реферат

 

по физике

 

на тему:

" Звуковые волны "

 

 

Исполнитель: студент 1 курса

ГАОУ СПО Елабужского ПК

Мухамадиев Айнур.

Содержание

Введение...................................3

Историческая справка.............5

Основные понятия акустики..9

Звуковые частоты............................9

Звуковые явления...............................9

Свойства звука................................11

Скорость распространения звука..14

Музыкальная акустика……………...15

Резонанс в акустике........................17

Анализ и синтез звука.....................19

Эффект Доплера в акустике.........20

Звуковые удары................................20

Шумы.................................................22

Ультразвуки и инфразвуки..............22

Применение звуковых волн....24

Звукозапись и фонограф Эдисона.24

Звуолокация....................................25

Применение ультра и инфразвуков………………………………..26

Ультразвуковая обработка...........27

Введение

Мир, окружающий нас, можно назвать миром звуков. Звучат вокруг нас голоса людей и музыка, шум ветра и щебет птиц, рокот моторов и шелест листвы. С помощью речи люди общаются, с помощью слуха получают информацию об окружающем мире. Не меньшее значение звук имеет для животных. С точки зрения физики, звук - это механические колебания, которые распро­страняются в упругой среде: воздухе, воде, твёрдом теле и т.п.

Способность человека воспринимать упругие колебания, слу­шать их отразились в названии учения о звуке - акустика (от греческого akustikos - слуховой, слышимый). Вообще человече­ское ухо слышит звук только тогда, когда на слуховой аппарат уха действуют механические колебания с частотой не ниже 16 Гц но не выше 20 000 Гц. Колебания же с более низкими или с более высокими частотами для человеческого уха неслышимы.

Вопросы, которыми занимается акустика, очень разнооб­разны. Некоторые из них связаны со свойствами и особенностями нашего слуха.

Предметом физиологической акустики и является сам орган слуха, его устройство и действие.

Архитектурная акустика изучает распространение звука в помещениях, влияние на звук размеров и формы помещений, свойств материалов, покрывающих стены и потолки, и т.д. При этом опять имеется в виду слуховое восприятие звука.



Поделиться:


Последнее изменение этой страницы: 2016-12-12; просмотров: 221; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 54.225.24.249 (0.128 с.)