Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Кафедра металлургических и теплофизических процессов↑ Стр 1 из 8Следующая ⇒ Содержание книги
Поиск на нашем сайте
Кафедра металлургических и теплофизических процессов
М.С. Синявин, Н.И. Бондарев Экология
Учебно-методическое пособие для студентов специальности 110100 - "Металлургия черных металлов"; 110300 – «Теплофизика, автоматизация и экология промышленных печей»; 110600 – «Обработка металлов давлением»; 120100 – «Технология машиностроения»; 170300 – «Металлургические машины и оборудование» 072000 – «Стандартизация и сертификация» (для всех форм обучения) Одобрено редакционно-издательским советом СТИ МИСиС Старый Оскол УДК 504.06 ББК 20.1 С 389
Рецензент: доц., к.т.н. Королькова Л.Н.
М.С. Синявин, Н.И. Бондарев. Экология. Учебно-методическое пособие. Старый Оскол, СТИ МИСиС, 2008, 100 с.
Учебно-методическое пособие предназначено для выполнения практических работ по дисциплине «Экология» для студентов металлургических и машиностроительных специальностей всех форм обучения, а также студентов других специальностей, изучающих данный курс.
© Кафедра МТП СТИ Содержание Предисловие 4 1. Расчёт рассеивания выбросов загрязняющих веществ в атмосферном воздухе 5 1.1. Расчёт рассеивания выбросов из одиночного источника 6 1.2. Расчёт рассеивания выбросов от группы источников 16 1.3. Расчёт загрязнения воздуха на промплощадке с учётом влияния застройки 24 1.4. Расчёт распределения концентрации от одиночного точечного источника при произвольных скоростях и направлениях ветра 31 1.5. Учёт фоновых концентраций при расчётах загрязнения атмосферы 33 1.6. Определение мощности выброса и высоты источника, соответствующих заданному уровню максимальной приземной концентрации 35 1.7. Задачи для самостоятельного решения 40 2. Санитарно-защитные зоны 46 2.1. Требования к установлению санитарно-защитных зон 47 2.2.Определение расчётной границы санитарно-защитной зоны по показателям загрязнения атмосферного воздуха 54 2.3. Установление зоны воздействия выбросов вредных веществ предприятия для корректировки санитарно- защитной зоны 63 2.4. Задачи для самостоятельного решении 75 Литература 85 Приложения 87
Предисловие При оценке воздействия выбросов загрязняющих веществ в атмосферный воздух следует учитывать соответствие выбросов загрязняющих веществ установленным нормативам уровня загрязнения – предельно допустимым концентрациям загрязняющих веществ в атмосферном воздухе (ПДК). При этом очень важным является определение соответствия гигиеническим требованиям воздуха в местах жизнедеятельности человека. Поэтому в соответствии с Федеральным Законом РФ «О санитарно-эпидемиологическом благополучии населения» от 30.03.1999 [1] предприятия, их отдельные здания и сооружения с технологическими процессами, являющимися источниками воздействия на среду обитания и здоровье человека, необходимо отделять от жилой застройки санитарно-защитными зонами (СЗЗ). В данном пособии рассматриваются основные требования в части расчёта концентрации загрязняющих веществ в атмосферном воздухе при размещении и проектировании предприятий, нормировании выбросов в атмосферу реконструируемых и действующих предприятий, сформулированные в общесоюзном нормативном документе (ОНД-86) «Методика расчёта концентраций в атмосферном воздухе вредных веществ, содержащихся в выбросах предприятий» [2]. В пособии также приводятся методы определения размеров санитарно-защитных зон предприятий и их границ. Пособие содержит краткое теоретическое введение, примеры расчётов и задачи для самостоятельного решения, позволяющие ознакомиться с методами расчётов рассеивания загрязняющих веществ в атмосферном воздухе и установления нормативов предельно допустимых выбросов (ПДВ) и с методами определения размеров СЗЗ предприятий и их границ с учётом выбросов загрязняющих веществ и воздействия физических факторов.
Пример 1.1. Расчёт рассеивания выбросов из одиночного источника Задание: Провести расчёт концентрации вредных веществ в атмосферном воздухе в районе источника выбросов при неблагоприятных метеорологических условиях. Исходные данные для расчёта: Источник выброса - котельная, расположенная в Новосибирской области на ровной открытой местности. Число дымовых труб N = 1. Высота дымовой трубы Н = 35 м. Диаметр устья трубы D = 1,4 м. Скорость выхода газовоздушной смеси w0 - 7 м/с. Температура газовоздушной смеси ТГ= 125°С. Температура окружающего воздуха ТВ = 25°С. Выбросы загрязняющих веществ: диоксида серы МSO2 = 12г/с, золы МЗ = 2,6 г/с, оксид азота (в пересчёте на диоксид азота) MN02 = 0,2 г/с. Решение 1. Согласно п. 1.1 принимаем значения коэффициентов в формуле (1.2): А = 200, η = 1. 2. Максимальные разовые предельно допустимые концентрации (ПДК): - диоксида серы ПДКSO2 - 0,5 мг/м3; - золы ПДКзолы = 0,5 мг/м3; - оксида азота ПДКNO2 =0,085 мг/м3. 3. Расчёт объема газовоздушной смеси проводят по формуле (1.3): м3/с 4. Перегрев газовоздушной смеси ΔТ составляет: ΔТ = ТГ – ТВ =125 - 25 = 100 °С. 5. Параметр f рассчитывают по формуле (1.4): f = 6. Параметр υм рассчитывают по формуле (1.5): υм = м/c 7. Параметр υ’м рассчитывают по формуле (1.6): υ’м = 8. Параметр ƒe рассчитывают по формуле (1.7): ƒe = 9. Параметр m рассчитывают по формуле (1.8): m = 10. Параметр n рассчитывают по формуле (1.9, в): так как υм = 2,04 ≥ 2: n = 1 11. Параметр d рассчитывают по формуле (1.11, в), так как υм = 2,04>2: d = 12. Опасную скорость ветра uм вычисляют по формуле (1.12, в), при υм > 2: uм = м/c 13. Расчёт концентрации диоксида серы. 13.1. Максимальную концентрацию SO2 вычисляют по формуле (1.2): мг/м3 13.2. Расстояние рассчитывают по формуле (1.10): м 13.3. Коэффициент S1 для расстояния х определяют по формулам (1.18, а), (1.18, б): x = 50 м х/хм = 0,116 S1 = 0,069 x = 100 м х/хм = 0,256 S1 = 0,232 x = 200 м х/хм = 0,465 S1 = 0,633 x = 400 м х/хм = 0,93 S1 = 1,0 x = 1000 м х/хм = 2,32 S1 = 0,664 x = 3000 м х/хм = 6,97 S1 = 0,154 13.4. Концентрацию СSO2 (мг/м3) на расстоянии x рассчитывают по формуле (1.17): x = 50 м СSO2 = x = 100 м СSO2 = x = 200 м СSO2 = x = 400 м СSO2 = x = 1000 м СSO2 = x = 3000 м СSO2 = 14. Расчёт концентрации окислов азота CNO2 проводится аналогично расчёту СSO2. При этом концентрации CNO2 и СSO2 связаны соотношением: CNO2 = . 15. Расчёт концентрации золы. 15.1. При отсутствии золоочистки коэффициент F = 3. Тогда максимальную концентрацию золы вычисляют по формуле или по соотношению: мг/м3. 15.2. Расстояние определяют по формуле (1.10) или по соотношению: м 15.3. Коэффициент Sl для расстояния х рассчитывается по формулам (1.18, а)- (1.18, г): x = 50 м х/хм = 0,233 S1 = 0,232 x = 100 м х/хм = 0,465 S1 = 0,633 x = 200 м х/хм = 0,93 S1 = 1,0 x = 400 м х/хм = 1,86 S1 = 0,78 x = 1000 м х/хм = 4,05 S1 = 0,296 x = 3000 м х/хм = 13,9 S1 = 0,028 15.4. Концентрация Cз (мг/м3) на расстоянии x определяется по формуле (1.17): x = 50 м Сз = x = 100 м Сз = x = 200 м Сз = x = 400 м Сз = x = 1000 м Сз = x = 3000 м Сз =
Пример 1.2. Расчёт рассеивания выбросов от группы источников Задание. Определить суммарную максимальную концентрацию загрязняющих веществ в атмосферном воздухе и средневзвешенную опасную скорость ветра для источников выбросов, характеристики которых приведены ниже.
Исходные данные для расчётов Промышленная площадка предприятия расположена на ровной открытой местности в Новосибирской области. Выбросы дымовых газов предприятия осуществляются через две трубы, расположенные на площадке на расстоянии 200 м друг от друга. Через первую трубу, имеющую высоту H1 = 60 м и диаметр устья D1 = 1,5 м, выбрасываются дымовые газы с объёмным расходом VГ1 = 11,5 м3/с с содержанием в них пыли Mn1 = 10,5 г/с. Через вторую трубу, имеющую высоту H2 = 45 м и диаметр устья D2 = 1,3 м, выбрасываются дымовые газы с объёмным расходом VГ2= 7,7 м3/с с содержанием в них пыли Мп2= 10,5 г/с. Температура газов на выходе из первой и второй труб одинакова и равна Т1=Т2= 105°С. Средняя температура самого жаркого месяца года равна Тв ср = 23°С. Максимальная разовая предельно допустимая концентрация пыли ПДКм.р.п = 0,4 мг/м3. Загрязняющие вещества выбрасываются без очистки. Решение. 1. Исходя из места расположения предприятия принимаются коэффициенты, определяющие условия рассеивания выбросов: А = 200; η = 1. 2. Коэффициент, учитывающий скорость осаждения частиц, при выбросе загрязняющих веществ без очистки составляет F = 1. 3. Определим максимальные приземные концентрации См и опасные скорости ветра uм для выбросов от первой трубы: 3.1. Перегрев газовоздушной смеси составляет: ΔT =105 - 23 = 82°С. 3.2. Скорость газов на выходе из первой трубы: w01= м/с 3.3. По формулам (1.4) – (1.7) рассчитаем параметры: f1 = ; = ; ; fe1 = 800()3 = . 3.4. Поскольку f1 = 0,2 < 100, то параметр m1 рассчитывают по формуле (1.8): 3.5. Так как 0,5 ≤ ( = 1,63) < 2, то параметр n1 рассчитывают по формуле (1.9, б): 3.6. Учитывая, что 0,5 ≤ ( = 1,63) < 2 находят параметр d1 по формуле (1.11, б): . 3.7. Так как 0,5 ≤ ( = 1,63) < 2, опасную скорость ветра для 1-ой трубы определяем по формуле (1.12, б): м/c. 3.8. Расчёт концентрации пыли на различном расстоянии от 1-ой трубы. 3.8.1. Максимальную концентрацию пыли от 1-ой трубы рассчитывают по формуле (1.2): мг/м3 3.8.2. Расстояние от 1-ой дымовой трубы до точки с максимальной концентрацией xм определяют по формуле (1.10): м. 3.8.3. Безразмерные коэффициенты S1, определяемые в зависимости от x/xм, рассчитывают по формулам (1.18, а) - (1.18, г): x = 50 м х/хм = S1 = 0,041 x = 100 м х/хм = S1 = 0,7 x = 200 м х/хм = S1 = 0,442 x = 400 м х/хм = S1 = 0,921 x = 1000 м х/хм = S1 = 0,804 x = 3000 м х/хм = S1 = 0,243 3.8.4. Концентрацию С1 на расстоянии x для выбросов 1-й трубы определяют по формуле (1.17): x = 50 м С1 = 0,0028 x = 100 м С1 = 0,010 x = 200 м С1 = 0,030 x = 400 м С1 = 0,064 x = 1000 м С1 = 0,055 x = 3000 м С1 = 0,017 4. Определим значения максимальных приземных концентраций См и опасных скоростей ветра uм для выбросов от 2-ой трубы. 4.1. Перегрев газовоздушной смеси: ΔT =105 - 23 = 82°С. 4.2. Скорость газов на выходе из 2-ой трубы: w02= м/с 4.3. По формулам (1.4), (1.5) рассчитаем параметры: f2 = ; = ; 4.4. Поскольку f2 = 0,3 < 100, то параметр m2 рассчитывается по формуле (1.8): 4.5. Так как 0,5 ≤ ( = 1,57) < 2, то параметр n2 рассчитывают по формуле (1.9, б): 4.6. Учитывая, что, 0,5 ≤ ( = 1,57) < 2находят параметр d2 по формуле (1.11, б): . 4.7. Так как 0,5 ≤ = 1,57 < 2, опасную скорость ветра для 2-ой трубы определяем по формуле (1.12, б): м/c. 4.8. Расчёт концентрации пыли на различном расстоянии от 2-ой трубы. 4.8.1. Максимальную концентрацию пыли от 2-ой трубы рассчитывают по формуле (1.2): мг/м3 4.8.2. Расстояние от 2-ой дымовой трубы до точки с максимальной концентрацией xм определяют по формуле (1.10): м. 4.8.3. Безразмерные коэффициенты S1, определяемые в зависимости от x/xм, рассчитывают по формулам (1.18): x = 50 м х/хм = S1 = 0,101 x = 100 м х/хм = S1 = 0,471 x = 200 м х/хм = S1 = 0,660 x = 400 м х/хм = S1 = 1 x = 600 м х/хм = S1 = 0,889 x = 1000 м х/хм = S1 = 0,644 x = 1500 м х/хм = S1 = 0,419 x = 2000 м х/хм = S1 = 0,281 x = 3000 м х/хм = S1 = 0,145 4.8.4. Концентрацию С2 на расстоянии x для выбросов 2-й трубы определяют по формуле (1.17): x = 50 м С2 = 0,014 x = 100 м С2 = 0,066 x = 400 м С2 = 0,140 x = 600 м С2 = 0,124 x = 1000 м С2 = 0,090 x = 3000 м С2 = 0,020 5. Суммарная максимальная концентрация от двух источников: См1+2 = См1 + См2 = 0,069 + 0,140 = 0,209 мг/м3. 6. Средневзвешенную опасную скорость ветра uм·с определяют согласно формуле (1.28): м/с.
Исходные данные для расчёта Источник выброса - дымовая труба высотой Н =55м, расположенная на промплощадке в Новосибирской области на ровной открытой местности. Объем выброса газовоздушной смеси Vl = 18,3 м3/с. Диаметр устья трубы D= 1,5 м. Максимальная приземная концентрация загрязняющего вещества См = 0,089 мг/м3. Температура газовоздушной смеси ТГ = 110°С. Температура окружающего воздуха TВ = 25°С. Решение. 1. Согласно п. 1.1 принимаем следующие значения коэффициентов: A = 200; η = 1; F = 1. 2. Перегрев газовоздушной смеси ΔТ = Тг - Тв = 110 - 25 = 85 °С. 3. Скорость выхода газовоздушной смеси рассчитывают, используя формулу (1.3): м/с. 4. Величины параметров f, м, , fе рассчитываем по формулам (1.4) - (1.7): f = ; м/c ; . 5. Значение коэффициента m находят по формуле (1.8): 6. Так как полученное значение 0,5 ≤ м < 2, то значение коэффициента n определяют по формуле (1.9, б): 7. Мощность выброса М вычисляем, используя формулу (1.2): г/с. Пример 1.4. Определение высоты источника Н, соответствующей заданному уровню максимальной приземной концентрации Задание. Определить высоту дымовой трубы при заданном уровне максимальной приземной концентрации при прочих фиксированных параметрах выброса.
Исходные данные для расчёта Источник выброса - дымовая труба, расположенная на промплощадке в Новосибирской области на ровной открытой местности. Объем выброса газовоздушной смеси V1 = 18,3 м3/с. Диаметр устья трубы D = 1,5 м. Максимальный разовый выброс загрязняющих веществ М = 15,5 г/с. Максимальная приземная концентрация загрязняющего вещества См = 0,089 мг/м3. Температура газовоздушной смеси ТГ = 110 °С, температура окружающего воздуха ТВ = 25 °С. Решение. 1. Согласно п. 1.1. принимаем следующие значения коэффициентов: А = 200; η = 1; F = 1. 2. Перегрев газовоздушной смеси ºС. 3. Скорость выхода газовоздушной смеси рассчитывают согласно формуле (1.3): м/с. 4. Высоту источника Н, соответствующую заданному значению См, определяют по формуле (1.66): м. 5. Проверим вычисленное значение Н на соответствие неравенству: ; . 6. Поскольку найденное значение высоты трубы не удовлетворяет условию , то для определения предварительного значения высоты Н используется формула (1.67): м. 7. По этому значению Н определяем величины параметров f, , , fe по формулам (1.4) – (1.7): ;
м/c ; . 8. Значение коэффициента m находят по формуле (1.8): 9. Так как полученное значение 0,5 ≤ м < 2, то значение коэффициента п определяют по формуле (1.9 б): 10. Дальнейшие уточнения значения высоты трубы Н выполняются по формуле (1.68): м. Далее уточнения можно не проводить, так как найденное значение Н отличается от предыдущего расчёта менее, чем на 1 м. Принимаем высоту источника Н = 55 м. 1.7. Задачи для самостоятельного решения
Задача 1.1. Как будет отличаться величина максимальной приземной концентрации См загрязняющего вещества, выбрасываемого из источника, расположенного на территории с коэффициентом температурной стратификации атмосферы, равным А1, и на территориях с коэффициентами стратификации, равными А2 и А3, при прочих равных условиях? Значения коэффициентов А1, А2 и А3 принять из табл. 1.1.
Таблица 1.1. Значения коэффициентов температурной стратификации атмосферы А
Продолжение таблицы 1.1 Задача 1.2. Определить, как может изменяться масса вредного вещества выбрасываемого в атмосферу в единицу времени М1 из источника, расположенного на территории с коэффициентом температурной стратификации атмосферы А1 если при прочих равных условиях источники выбросов будут расположены в районах с коэффициентами температурной стратификации атмосферы равными А2 и А3. Значения коэффициентов А1, А2 и А3 принять из табл. 1.1. Задача 1.3. На предприятии проведена реконструкция. При этом температура газов, выбрасываемых из дымовой трубы, изменилась от величины TГ1 до TГ2. Определить значение максимальной приземной концентрации при рассеивании загрязняющего вещества в атмосферном воздухе, расстояние от источника выброса до точки со значением максимальной приземной концентрации и величину опасной скорости ветра до реконструкции и после неё. Источник выброса расположен на ровной местности (η = 1). Загрязняющее вещество выбрасывается без очистки (F =1). Характеристики источников выбросов загрязняющих веществ принять по данным табл. 1.2. Задача 1.4. Определить, как может измениться массовый секундный выброс загрязняющего вещества, выбрасываемого в атмосферу, если при реконструкции высота трубы увеличилась на 15 м, а другие параметры остались без изменений. Источник выброса расположен на ровной местности (η = 1). Загрязняющее вещество выбрасывается без очистки (F =1). Характеристики источников выбросов загрязняющих веществ принять по данным табл. 1.2. Температуру выбрасываемых газов принять равной ТГ1. Задача 1.5. На промышленной площадке решено заменить одну дымовую трубу двумя с диаметрами устья на 0,3 м меньше, чем у существующей трубы. При этом существующий объёмный расход выбрасываемых газов и количество загрязняющих веществ будут распределены на две новые трубы поровну. Рассчитать высоту проектируемых труб таким образом, чтобы условия рассеивания выбросов остались прежними. Источник выброса расположен на ровной местности (η = 1). Загрязняющее вещество выбрасывается без очистки (F =1). Характеристики источников выбросов загрязняющих веществ взять из табл. 1.2. Температуру выбрасываемых газов принять равной ТГ1.
Таблица 1.2 Характеристики источников выбросов загрязняющих веществ
Продолжение таблицы 1.2
Задача 1.6. Определить высоту источника выброса Н, опасную скорость ветра и расстояние, на котором величина максимальной концентрации загрязняющего вещества в атмосферном воздухе будет равной ПДК. Оценить зону влияния источника при найденном значении высоты трубы. Источник выброса расположен на ровной местности (η = 1). Загрязняющее вещество выбрасывается без очистки (F = 1). Характеристики источников выбросов загрязняющих веществ принять по данным табл. 1.2. Температуру выбрасываемых газов принять равной ТГ2. Задача 1.7. Рассчитать и построить график зависимости значений приземной концентрации загрязняющего вещества от расстояния от источника выбросов, учитывая, что фоновая концентрация загрязняющего вещества на расстоянии от источника до 1000 м составляет 1,5 ПДК, от 1001 до 2500 м - 1,0 ПДК, а дальше - 0,5 ПДК. По графику распределения приземной концентрации определить расстояние, на котором приземная концентрация загрязняющего вещества с учётом фоновой концентрации будет равной ПДК и определить величину приземной концентрации на расстоянии 1250 м. Источник выброса расположен на ровной местности (η = 1). Загрязняющее вещество выбрасывается без очистки (F = 1). Характеристики источников выбросов загрязняющих веществ принять по данным табл. 1.2. Температуру выбрасываемых газов принять равной ТГ2. Задача 1.8. Два источника расположены на расстоянии 250 м друг от друга. Определить величину максимальной концентрации загрязняющего вещества в атмосферном воздухе и расстояние, на котором она будет наблюдаться вдоль оси расположения источников при скорости ветра, отличной от опасной. Источники выброса расположены на ровной местности (η = 1). Загрязняющее вещество выбрасывается без очистки (F = 1). Характеристики источников выбросов загрязняющих веществ принять по данным табл. 1.2. Задача 1.9. Два источника расположены на расстоянии 150 м друг от друга. Определить суммарную величину максимальной концентрации загрязняющего вещества в атмосферном воздухе от этих источников и средневзвешенную опасную скорость ветра. Рассчитать высоту трубы, которая может заменить существующие две, обеспечивая общий объем выбрасываемых газов и массу загрязняющего вещества при значении максимальной приземной концентрации для двух труб. Источники выброса расположены на ровной местности (η = 1). Загрязняющее вещество выбрасывается без очистки (F =1). Характеристики источников выбросов загрязняющих веществ принять по данным табл. 1.2. Задача 1.10. Дымовая труба расположена вблизи здания у середины его длинной стороны. Опасное направление ветра - от здания к источнику и перпендикулярно длинной стороне здания. Высота здания 18 м, ширина 25 м, длина 50 м. Определить высоту ветровой тени, опасную скорость ветра при наличии здания. Рассчитать максимальную концентрацию загрязняющего вещества и осевую концентрацию на различных расстояниях от источника выброса. Источник выброса расположен на ровной местности (η =1). Загрязняющее вещество выбрасывается без очистки (F =1). Характеристики источников выбросов загрязняющих веществ принять по данным табл. 1.2. Задача 1.11. Дымовая труба расположена вблизи здания у середины его короткой стороны. Высота здания 50 м, ширина 40 м, длина 80 м. Опасное направление ветра - от здания к источнику и перпендикулярно короткой стороне здания. Определить высоту ветровой тени, опасную скорость ветра при наличии здания. Рассчитать максимальную концентрацию загрязняющего вещества и осевую концентрацию на различных расстояниях от источника выброса. Источник выброса расположен на ровной местности (η = 1). Загрязняющее вещество выбрасывается без очистки (F = 1). Характеристики источников выбросов загрязняющих веществ принять по данным табл. 1.2. Задача 1.12. Дымовая труба расположена вблизи здания у середины его длинной стороны. Опасное направление ветра - от здания к источнику и перпендикулярно длинной стороне здания. Высота здания 20 м, ширина 30 м, длина 60 м. Рассчитать концентрацию загрязняющего вещества на оси факела при скорости ветра, отличной от опасной, и направлении ветра, составляющем угол 450 с опасным направлением. Источник выброса расположен на ровной местности (η =1). Загрязняющее вещество выбрасывается без очистки (F = 1). Характеристики источников выбросов загрязняющих веществ принять по данным табл. 1.2.
Санитарно-защитные зоны Санитарно-защитная зона (СЗЗ)- это особая функциональная зона, отделяющая предприятие от селитебной зоны либо от иных зон функционального использования территории с нормативно закреплёнными повышенными требованиями к качеству окружающей среды. Санитарно-защитная зона является обязательным элементом любого объекта, который может быть источником химического, биологического или физического воздействия на среду обитания и здоровье человека. Эта зона устанавливается с целью снижения загрязнения атмосферного воздуха, уровня шума и других факторов негативного воздействия до предельно допустимых значений на границе с селитебными территориями за счёт санитарных разрывов и озеленения территорий. Разработка проектов СЗЗ выполняется с целью предотвращения или ослабления негативного воздействия производственных объектов на окружающую среду и здоровье населения, определения возможности сохранения предприятия при применяемой технологии и объемах производства в условиях города, а также принятия экономически и технически оправданных, социально и экологически целесообразных проектных и строительных решений. Установление границ СЗЗ производится по совокупности всех видов техногенных воздействий объекта на окружающую среду и здоровье населения на основе разрабатываемых проектов. Разработка проектов СЗЗ проводится в соответствии с Законом РФ "О санитарно-эпидемиологическом благополучии населения" [1], Положением о санитарно-эпидемиологическом нормировании [3], Законом РФ «Об охране окружающей природной среды» (ст. 34) [4], а также требованиями санитарно-эпидемиологических правил и нормативов (СанПиН 2.2.1/2.1.1.1031-01 [5], СанПиН 2.1.6.575-96 [6]), ГОСТов [7,11-13] и других нормативных документов. Требования к установлению СЗЗ Основные требования к установлению СЗЗ
Основные правила установления регламентированных границ СЗЗ сформулированы в СанПиН 2.2.1/2.1.1.1031-01 «Санитарно-защитные зоны и санитарная классификация предприятий, сооружений и иных объектов» [5] и рекомендациях по разработке проектов санитарно-защитных зон промышленных предприятий, групп предприятий [8]. Регламентированный размер СЗЗ определяется прежде всего классом опасности предприятия или производства по приведенной в СанПиН 2.2.1/2.1.1.1031-01 (раздел 4) [5] классификации. Для предприятий металлургической промышленности санитарная классификация приведена в приложении 3 настоящего пособия. Этот класс опасности зависит от характера производства, определяющего состав вредных воздействий, диапазона удельных выбросов и др. В ряде случаев размеры СЗЗ дифференцированы по мощности производства. Для объектов, их отдельных зданий и сооружений с технологическими процессами, являющимися источниками воздействия на среду обитания и здоровье человека, в зависимости от мощности, условий эксплуатации, хар
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-12; просмотров: 436; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.149.243.29 (0.013 с.) |