Типовая схема и элементы управления.



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Типовая схема и элементы управления.



 

Рассмотрим типовую схему пневмопривода одной степени подвижности ПР (рис. 10).Она состоит из входного штуцера 12, через который осуществляется подвод сжатого воздуха под давлением 0,5…0,6 МПа из заводской пневмосети к ПР. Вентилем 11 производится включение привода в работу. Влагоотделитель 10 служит для подготовки сжатого воздуха и удаления из него водяного конденсата, который вызывает коррозию и увеличивает трение трущихся деталей. Далее посредством соответствующей регулировки редукционного клапана 9, производится предварительная настройка давления сжатого воздуха, поступающего к элементам привода. Это давление является номинальным и устанавливается согласно техническим требованиям на данный ПР. Маслораспылитель 8 также участвует в подготовке воздуха и обеспечивает распыление масла, необходимого для смазки перемещающихся элементов исполнительного двигателя (цилиндра 2) и распределителя 6. В качестве последних используются т.н. золотники и клапаны. Обычно управление распределителем производится от электромагнита. Распределители служат для перераспределения потоков рабочего тела, в данном случае сжатого воздуха, в соответствии с управляющей программой и требованиями технологического процесса.

 

 

Рис. 10 – Типовая схема пневмопривода

 

Согласно схеме, изображенной на рисунке 10, перемещение поршня 1 на шаг S происходит вправо вместе со штоком 3, рукой 4 и УЗ 5. Дроссель 7 служит для регулировки скорости перемещения подвижных частей двигателя.

К числу основных параметров, характеризующих пневмодвигатель, относятся: эффективная площадь поршня в рабочей (поршневой) F1 и выхлопной F2 (штоковой) полостях; рабочий ход поршня S; текущая координата x; скорость v и ускорение а поршня; масса mp исполнительного устройства (напр., руки ПР); давление воздуха в рабочей р1 и выхлопной полотях р2; эффективные площади сечений трубопроводов на входе f1 и выходе f2; диаметры поршня D и штока d; движущая сила РД и сила нагрузки (потребная) РН.

Выбор параметров пневмоцилиндра производится следующим образом. Диаметр поршня цилиндра, расположенного горизонтально:

 

; (3)

 

для вертикально расположенного цилиндра:

 

(4)

 

где рс – давление воздуха в сети (0,5…0,6 Мпа);

РН – нагрузка, Н;

G – вес исполнительного устройства, Н;

k1 – коэффициент, учитывающий отношение РНД, выбираемый в зависимости от скорости v и давления рс (в среднем k1 = 0,4…0,5);

k2 – коэффициент, учитывающий трение в цилиндре, выбираемый в зависимости от РН. При РН=0,6…60 кН, k2=0.5…0,05;

В – постоянная, В=11,3;

G – вес подвижных частей исполнительного устройства с объектом манипулирования. Знак «+» при опускании поршня, знак «–» – при подъеме.

Длину цилиндра выбирают в зависимости от хода поршня, причем для цилиндров двустороннего действия рекомендуется S=(8…10)D. При больших ходах поршня, шток рассчитывают на устойчивость. В ПР применяются пневмоцилиндры с D=32…80 мм и ходом S до 1000 мм.

Сила нагрузки РН определяется по формуле:

 

РН = РТ + РИ ± G (5)

 

где РТ – сила трения;

РИ – сила инерции, РИ = mрd2x/dt2

 

Время работы пневмоцилиндра складывается из времени прямого хода tПХ, времени выстоя tВ и времени обратного хода tОХ. Время прямого хода складывается из времени t1 срабатывания распределителя, распространения воздуха до цилиндра и времени нарастания давления р1, времени t1 движения поршня по пути S и времени t3 в течении которого давление р1 нарастает до рабочего давления в сети рс.

Время выстоя tВ зависит от характера технологического процесса. Время обратного хода поршня состоит из аналогичных периодов, обратных t1, t2 и t3. Суммарное время работы определяет быстродействие работы ПР для каждой степени подвижности.

Расход воздуха (несжатого) для практических расчетов с учетом турбулентности его течения для политропического процесса pVn = const (n – показатель политропы, для воздуха n=1,4) можно определить по формуле:

 

(6)

 

где μ – коэффициент расхода, определяемый отношением реальной скорости истечения к теоретической (справочн. в зависимости от стандартной формы местных сужений);

р1 и р2 – давления воздуха в полостях нагнетания и опорожнения соответственно;

R – газовая постоянная (для воздуха R=287,14 Дж/кг·К);

Т2 – температура в полости опорожнения;

f1 – площадь входного сечения.

Критическое значение отношения р21, которого стремятся добиться для увеличения скорости выходного звена, равно 0,529. Этого значения добиваются путем уменьшения давления воздуха на выходе, при этом общий расход воздуха практически не изменяется.

 

Демпфирование пневмопривода

 

Ввиду высоких скоростей движения поршня пневмодвигателя необходимо осуществлять его торможение в конце прямого и обратного хода. Это повышает точность позиционирования и снижает динамические нагрузки в ПР.

В пневмоприводах ПР используются два типа торможения: с помощью демпфирующих устройств или путем дросселирования (рис.10).

При использовании демпфирующих устройств (внешними устройствами) торможение происходит на небольшом участке в конце хода при подходе к точке позиционирования. При использовании дросселей (торможение рабочим телом) разгон и торможение осуществляется на большей части хода, чем достигается требуемый закон изменения кинематических параметров в течение всего цикла движения.

Торможение демпфером основано на гашении энергии движения. Наиболее широкое применение получили гидравлические демпферы (рис. 11)и меньшее – механические.

 

Работа гидродемпфера происходит следующим образом. В момент торможения упор 1, взаимодействующий со штоком пневмодвигателя, утопляет подвижную часть демпфера – поршень 2 гидроцилиндра 3. За счет вытеснения масла через коническую щель 4 в полость 5 и происходит торможение поршня 2. Плавность торможения обеспечивается за счет выбора параметров демпфера: размеров конической щели 4, параметров дросселя 8 и пружины 7 аккумулятора 6. Размеры dд, b и l рассчитывают по известной скорости поршня и допускаемому тормозному ходу.

 

 

Рис. 11 – Схема гидродемпфера.

 

Сила демпфирования РД может быть определена по формуле:

(7)

где Δрз – перепад давления в кольцевом зазоре z;

dп – диаметр поршня демпфера.

Перепад давления Δрз определяется по формуле:

(8)

где μ – динамическая вязкость жидкости;

b – длина демпфирующего зазора;

vЗ – скорость жидкости в зазоре.

Из условия неразрывности потока жидкости имеем:

(9)

где v – скорость поршня исполнительного двигателя;

fЗ – площадь зазора.

Тогда окончательно получаем:

(10)

В механических демпферах энергия движущихся элементов привода и груза преобразуется в энергию сжатой пружины. Конструктивное оформление механического демпфера производится в виде цилиндрической пружины, заключенной в корпус. Пружинные демпферы применяются для приводов с грузоподъемностью до 1 кг., поскольку параметры пружины зависят от массы перемещаемых объектов манипулирования, а также от скорости.

Основным параметром пружины является сила пружины РпрД.

 

Торможение поршня с использованием рабочего теладостигается путем уменьшения расхода воздуха из полости опорожнения за счет установки специального дросселя (поз.7 рис.10) и позволяет изменять площадь выходного сечения f2 по закону f2= f(x). При этом меняется значение давления и формируется необходимый закон движения поршня, т.е. регулируется скорость его перемещения. Такой способ торможения возможен только благодаря высокой сжимаемости воздуха и используется для роботов с грузоподъемностью до 5 кг.

Другим способом торможения является способ, при котором используется схема создания противодавления в соответствующей полости двигателя. При достижении поршнем некоторого положения в полость опорожнения подается основное давление магистрали (рис.12).

Рис. 12 – Схема торможения противодавлением

 

Работа заключается в следующем. Сжатый воздух из магистрали питания через пневмораспределители 1 и 2 поступает в левую полость цилиндра. Правая полость через пневмораспределитель 5 и дроссель 4 сообщена с атмосферой. Поршень движется из левого положения в правое, при этом перепад давления на поршне Δр=р12. По достижении поршнем положения 1-1 посредством системы управления ПР пневмораспределитель 5 переключается в другое положение (влево) и сжатый воздух из магистрали питания попадает в правую полость пневмоцилиндра. Давление в обоих полостях начинает выравниваться до р12. Из-за разности площадей левой и правой частей поршня F1 и F2 на поршень действует сила Р= р1 (F1 – F2), под действием которой поршень будет двигаться с меньшей скоростью.

Для создания равновесия сил на поршне пневмораспределитель 2 должен переключиться одновременно с пневмораспределителем 5 и перекрыть доступ сжатого воздуха в левую полость цилиндра, которая будет представлять собой замкнутый объем V, для которого можно принять pV=const.

В случае равновесия на поршне:

 

(11)

 

где N – внешние силы (функциональное назначение).

Выражая площадь через диаметры получаем условие, характеризующее равновесие в полостях цилиндра через соотношение давлений:

(при Nвн=0) (12)

где D и d – диаметры поршня и штока соответственно.

Иначе последнюю формулу можно переписать в виде:

(13)

 

где X и X1 – начальная и конечная координата поршня.

Данная формула получена из следующего выражения с учетом pV=const:

(14)

 

V и V1 – начальный и конечный объем левой полости.

В реальных конструкциях d/D= 0,3...0,7. В этом случае X1=(1,1...2) X. Тогда очевидно, что после подачи сигнала на останов (после переключение влево пневмораспределителя 5 влево) перемещение поршня может составлять от 10 до 100% от начального положения X.

Приведенные зависимости не отражают полностью реальные условия эксплуатации, т.к. не учитывают сил инерции и пр. и показывают качественную картину происходящих процессов при торможении поршня противодавлением (учет сил инерции важен и обязателен во всех проектировочных, прочностных и иных расчетах!).

Рассмотренный метод торможения рабочим телом не является единственным. Существует множество других схем, но общим недостатком их является перенастройка демпфирования при изменении условий и характера внешней нагрузки.

Данный метод демпфирования применяется для роботов с грузоподъемностью до 1 кг.

 



Последнее изменение этой страницы: 2016-12-12; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.238.174.50 (0.008 с.)