Электроды для съема сигнала.



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Электроды для съема сигнала.



Электрод- проводники специальной формы, соед-щие измерительную цепь с биологической системой. Исп-ся в реографии. Проблема – в минимизации потерь полезной информации, на переходном сопротивлении электрод-кожа. Схема контура (εбп-э.д.с. источника биопотенциалов, r- сопротивление внутр-х тканей системы, R сопротивл. Кожи и электродов, R вх- входное сопротивление усилителя биопотенциалов)

Для уменьшения сопротивления электрод- кожа: увеличивают проводимость (физиологич р-р), увеличить площадь контакта( увеличитьразмер электрода). По назначению: для кратковременного, длительного использования, на подвижных обследуемых, экстренного применения. Электроды для снятия электрокардиограмм, стеклянные микроэлектроды.

Датчикомназывается устройство, преобразующее измеряемую или контролируемую величину в сигнал, удобный для передачи, дальнейшего преобразования и регистрации.

В рамках медицинской электроники рассматриваются только такие датчики, которые преобразуют неэлектрическую величину в электрический сигнал. Устройства, работающие с электрическими сигналами, имеют ряд преимуществ:

· высокую чувствительность и малую инерционность;

· возможность проводить измерения на расстоянии;

· удобство регистрации и обработки данных на ЭВМ.

Датчики характеризуются функцией преобразования F(x): зависимостью выходной величины Y от входной величины х: Y=F(x).Наиболее удобны датчики с прямо пропорциональной зависимостью Yот x: Y=kx. Величина Z=DY/Dx, показывающая изменение выходной величины при единичном изменении входной, называется чувствительностью датчика. Минимальное изменение входной величины, которое можно обнаружить датчиком, называется порогом чувствительности.

Датчик - преобразователь медицинской информации в форму, удобную для последующего усиления, регистрации, обработки (чаще всего в электрическую).

Входными неэлектрическими величинами датчиков могут быть механические величины (давление, частота, колебание); физические (температура, освещенность, влажность); физиологические (наполнение ткани кровью).

Выходными электрическим величинами обычно служат ток, напряжение, полное сопротивление и т. д.

Биоуправляемые датчики изменяют свои характеристики непосредственно под влиянием медико-биологической информации, поступающей от объекта измерения.

В активных датчиках измеряемый параметр непосредственно преобразуется в электрический сигнал, т. е. под воздействием измеряемой величины активные датчики сами генерируют сигнал соответствующей амплитуды или частоты (пьезоэлектрические, индукционные, термоэлементы).

Пассивные под воздействием входной величины изменяют свои электрические параметры: сопротивление, емкость или индуктивность (емкостные, индуктивные, резистивные, контактные).

Энергетические датчики активно воздействуют на органы и ткани немодулированным энергетическим потоком со строго определенными, постоянными во времени характеристиками. Измеряемый параметр воздействует на характеристики этого потока, модулирует его пропорционально изменениям самого параметра (фотоэлектрические, УЗ).

Каждый датчик характеризуется определенными метрологическими показателями:

а) чувствительность - минимальное изменение снимаемого параметра, которое можно устойчиво обнаружить с помощью данного преобразователя;

б) динамический диапазон - диапазон входных величин, измерение которых производится без заметных искажений;

в) погрешность - максимальная разность между получаемой и номинальной величинами;

г) время реакции - минимальный промежуток времени, в течение которого происходит установка выходной величины на уровень, соответствующий измененному уровню входной величины.

57. Пъезоэффект (пэ) – явление, когда поляризация может возникнуть при отсутствии эл. поля при деформации. 2 типа: поперечный и продольный. Обусловлен деформацией кристалич. ячеек и сдвигом подрешеток относительно друг друга при мех. деформ. Поляризованность при небольших мех. деформ. пропорционально их величине. К кристаллу К приложены Ме пластинки М, которые замкнуты через неоновую лампу Н. При ударе по кристаллу появл-ся напряжение на его гранях и на Ме пластинах и неоновая лампа вспыхивает. Обратный ПЭ - явление, когда при наложении на кристаллы электрич. поля последние деформируются. ПЭ прим-ся в тех случаях, когда необходимо преобр-ть механич. вел-ну в электрическую. Прямой ПЭ – в датчиках для рег-ции пульса,в адаптерах, микрофонах. ПЭ возн-ет в костной ткани при наличии сдвиговой деф-ции.

58. Датчик – устройство, кот. преобразует измеряемую или контролируемую величину в сигнал, удобный для передачи, дальнейшего преобразования или регистрации. Первичный датчик – к которому подведена измерительная величина. 2 группы: генераторные и параметрические. Генераторные – генерируют напряжение или ток (типы: пъезоэлектрические, термоэлектрические, индукционные, фотоэлектрические). Параметрические – изменяется сигнал ( типы: емкостные, реостатные, индуктивные). Датчики характеризуются: функцией преобразования – функциональная зависимость выходной величины у от входной х, которая описывается аналитическим выражением у=f(х) или графиком. Чувствительность датчика – в какой мере выходная величина реагирует на изменение входной: z= y\ х (Ом\мм или мВ\К). Временная хар-ка – физические процессы в датчиках не происходят мгновенно, это приводит к запаздыванию изменения вход. вел-ны по сравнению с изм-ем выходной.

 

ДАТЧИКИ ТЕМПЕРАТУРЫ ТЕЛА

Термометры сопротивления (терморезисторы, термисторы) – датчики, в основе действия которых лежит изменение электрического сопротивления при изменении температуры. При этом у металлов сопротивление с ростом температуры увеличивается, а у полупроводников уменьшается.

Измеряют t0 ядра или сердцевины тела и t0 пов-сти кожи чел. Для измерения температуры человеческого тела - проволочные и полу-проводниковые терморезисторы и термоэлементы. В основу работы проволочных и полупроводниковых резисторов положено их свойство изменять сопротивление при изменении температуры. Изменение температуры оценивается изменением ТКС м. б. >0 R возрастает и ТКС<0 – уменьшается - пассивные биоуправляемые датчики. В основу работы термоэлектрических датчиков положен принцип работы термогенератора. Хар-ки датчиков: а) линейность зав-сти R от Т и Е; б) время р-ции; в) стабильность параметров.

Характеристики термисторных датчиков:

а) линейность зависимости R от Т ;

б) время реакции;

в) стабильность параметров.

Рассмотрим несколько конкретных конструкций температурных датчиков.

Корпус датчика для измерения температуры поверхности тела может быть похож на шариковую авторучку, но вместо шарика на рабочем конце имеется термистор, выводы которого идут внутри полого корпуса (простой и надежный).

Термистор датчика может крепиться в латунном корпусе.

Датчик для измерения ректальной температуры изготавливается в виде пластмассового катетера, на конце которого под металлическим колпачком расположен чувствительный элемент (проволочный терморезистор, термистор или термоэлемент).

60. Резистивный датчик частоты дыхания - из резиновой эластич. трубки, наполненной угольным порошком, в торцах трубки выставлены электроды. К концам трубки опоясывающий грудную клетку ремень. При вдохе -растягивается, контакт между частичками угля ухудшается, сопротивление цепи меняется и ток изменяется, по изменению тока судят о частоте дыхания. В другом резистивном датчике используется токопроводящая резина. Растяжение резины при вдохе приводит к увеличению сопротивления, которое преобразуется в импульсы тока. Пневматический датчик частоты дыхания представляет гофрированную трубку из резины герметично закрытую с торцов. При растяжении объем трубки увеличивается и давление воздуха внутри падает. Изменение давления внутри фиксирует датчик. Объем вдыхаемого и выдыхаемого воздуха позволяет определять турбинный датчик. Он представляет собой полный цилиндр, изготовленный из оргстекла с фланцами для крепления к дыхательной маске и к трубке подачи газовой смеси. Контроль эффективности дыхания можно осуществлять путем фотометрического измерения процентного содержания оксигемоглобина в периферической артериальной крови. Метод изм-ния основан на отличии спектральных хар-тик поглощения света восстановител. гемоглобином - Нв и оксигемоглобином НвО2. Для l = 620-680 нм коэф-ент поглощения для Нв в несколько раз выше чем НвО2, что может быть исп-но.

 



Последнее изменение этой страницы: 2016-12-12; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.227.235.183 (0.008 с.)