Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Лекция. Цифровые телекоммуникационные сетиСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Цель лекции: Переход к цифровым сетям. Виды цифровых телекоммуникационных систем. Плезихронная цифровая иерархия Содержание: -историческая необходимость перехода к цифровым сетям; - цифровые системы передачи.
Изобретение и совершенствование аналоговых систем передачи сыграло важную роль в технике связи на своем этапе времени. Однако дальнейшее развитие аналоговой техники, в том числе и каналообразующей, в настоящее время осуществляется медленными темпами, так как уже получены практически предельные или экономически оправданные параметры, улучшение которых весьма проблематично. Теоретические предпосылки и техническая целесообразность указывают на необходимость перехода на цифровую каналообразующую аппаратуру. Цифровые каналы характеризуются отсутствием накопления амплитудно-частотных искажений и помех, так как для восстановления параметров импульсных сигналов, искаженных в результате прохождения по линии, используется принцип регенерации. Это позволяет организовать высококачественные каналы большой протяженности. Благодаря новой постоянно совершенствуемой элементной базе сама каналообразующая аппаратура стала гораздо более простой в изготовлении, блоки стали значительно компактнее и универсальнее. Сами же системы передачи теперь практически на требуют большого числа кропотливых настроек. В процессе группообразования информации от каждого низкоскоростного канала поочерёдно встраиваются по оси времени в общий высокоскоростной поток, т.е. происходит поочерёдная циклическая передача состояния информационных символов от каждого канала. Структура каждого цикла (ФРЕЙМА) строго определена. Длительность цикла 125 мкс (соотве6тствует частоте дискретизации 8 кГц). Весь цикл разбивается на определённое число канальных интервалов – таймслотов. Для каждого из N объединяемых каналов выделяется канальный интервал КИ (таймслот), в котором будет передаваться кодовая группа состояния данного канала на момент передачи. Дополнительно к информационным канальным сигналам в цикл вводятся символы синхронизации, команды согласования; а также сигналы контроля и управления – так называемые СЛУЖЕБНЫЕ сигналы. Причём служебные сигналы вводятся как общие для всех каналов (синхронизация, телеконтроль, команды согласования), так и при необходимости для каждого канала. Из-за необходимости введения дополнительных, но НЕОБХОДИМЫХ символов в циклы, возрастает скорость передачи в кб/с за время цикла по сравнению с простой суммой информационных скоростей каналов. Например, 30 каналов по 64 кб/с имеют скорость
30 × 64 = 1920 кбит/c. На эти 30 каналов необходимо за это же время передать дополнительных символов ещё на два канала 2 × 64 = 128 кбит/с. Итого в ИКМ-30 получается скорость потока 1920 + 128 = 2048 кбит/с, что и составляет скорость первичного группообразования. Т.е. в ИКМ-30 передаётся 30 информационных и 2 дополнительных канальных интервалов.
Чем выше по иерархии ступень мультиплексирования, тем больше надо дополнительных позиций во фрейме, поэтому скорость передачи групповых сигналов не является простой суммой канальных 64 кб/с скоростей. Итак, в цикле (фрейме) должны быть позиции для сигналов синхронизации, информационных, для передачи сигналов управления, контроля и возможно других дополнительных сигналов. Эти обычно полезные сигналы могут быть распределены или побитно, или покодово. При распределении этих позиций по фрейму руководствуются следующими соображениями: 1.Символы синхронизации должны быть хорошо различимыми, и должны обеспечивать минимальное время их поиска в случае потери синхронизма. Обычно их формируют в виде сосредоточенной группы сигналов в определённой позиции (слоте) фрейма (цикла). 2.Распределение команд согласования скоростей, управления и т.п. (т.е. сигналов управления и взаимодействия СУВ) должно быть таким, чтобы обеспечивалась их максимальная помехоустойчивость. Их часто равномерно распределяют по циклу, чтобы случайно не получить ложные сигналы от сосредоточенной помехи, но могут их передавать и в виде группы в определённом слоте (канальном интервале). 3.Длительность цикла должна быть минимальной, чтобы обеспечить минимум времени на восстановление синхронизма в случае его потери. 4.Структура цикла должна позволять работать системе как в асинхронном, так и в синхронном режиме. Рассмотрим, например, структуру цикла, применяемую в отечественной аппаратуре ИКМ-30. В этой системе цикл, длительностью 125 мкс делится на 32 одинаковых канальных интервала (слота). Для передачи информации используют 8-разрядный код при частоте дискретизации 8 кГц. В каждом цикле передаются СУВ сразу для двух каналов (N/2). Т.к. ИКМ-30 мультиплексирует 30 телефонных каналов, то сверхцикл будет N/2 + 1 = 16 циклов. В каждом цикле первый слот отводится для сигналов цикловой синхронизации, а 16-й слот – для передачи сигналов СУВ (сигналы управления, аварийные сигналы, служебные и т.п.) и 30 каналов на передачу информации. Итого 32 КИ в каждом цикле. Нетрудно подсчитать скорость передачи в системе ИКМ-30 в бит/с.
8кГц дискр × 8разр × 32КИ = 2048 кбит/с – скорость первичного уплотнения. Структура сигналов синхронизации и количество разрядов (позиций) в СС имеют существенное значение для времени удержания системы ПРД-ПРМ в состоянии синхронизма и времени восстановления синхронизма после потери его. Кодовая группа синхросигнала (СС) должна отличаться от кодовых групп других канальных интервалов (КИ). Эта отличимость разная для различных скоростей передачи и различного количества разрядов в КИ. Наиболее удачные кодовые группы для СС удаётся получить на основе понятия критических точек. Критическая точка – это точки повторяемости одинаковых чередований логического «0» и «1». Например, если кодовая группа имеет «d» символов, то: группа имеет одну критическую точку. Последняя «1» перед новым «0».
Рисунок 30.1
СС циклов. 0011011 отсутств. СС цикл. 1у11111 СС сверхцикл. 0000 – вместо СУВ одного канала.
группа - имеет «d» критических точек. группа 0101…01 – имеет b/2 критических точек. группа 0011011 – одна. Если во всём цикле примерно <500 тактовых интервалов (ТИ), то выгоднее применять коды СС с малым количеством критических точек. При большом количестве ТИ в цикле выгоднее с большим числом критических точек (вплоть до «d» штук). При этом поиск синхросигнала ведётся от цикла к циклу, поэтому при потере СС их ищут в течении нескольких циклов (от 1 до 100 в зависимости от кода СС и количества ТИ в цикле). За это время может неправильно считываться информация.
|
||||||
Последнее изменение этой страницы: 2016-12-12; просмотров: 429; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.247.24 (0.011 с.) |