Гравитационное отклонение света 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Гравитационное отклонение света



Самая известная ранняя проверка ОТО стала возможна благодаря полному солнечному затмению 1919 года. Артур Эддингтон показал, что свет от звезды искривлялся вблизи Солнца в точном соответствии с предсказаниями ОТО.

Искривление пути света происходит в любой ускоренной системе отсчёта. Детальный вид наблюдаемой траектории и гравитационные эффекты линзирования зависят, тем не менее, от кривизны пространства-времени. Эйнштейн узнал об этом эффекте в 1911 году, и когда он эвристическим путём вычислил величину кривизны траекторий, она оказалась такой же, какая предсказывалась классической механикой для частиц, движущихся со скоростью света. В 1916 году Эйнштейн обнаружил, что на самом деле в ОТО угловой сдвиг направления распространения света в два раза больше, чем в ньютоновской теории, в отличие от предыдущего рассмотрения. Таким образом, это предсказание стало ещё одним способом проверки ОТО.

С 1919 года данное явление было подтверждено астрономическими наблюдениями звёзд в процессе затмений Солнца, а также с высокой точностью проверено радиоинтерферометрическими наблюдениями квазаров, проходящих вблизи Солнца во время его пути по эклиптике.

Гравитационное линзирование происходит, когда один отдалённый массивный объект находится вблизи или непосредственно на линии, соединяющей наблюдателя с другим объектом, намного более удалённым. В этом случае искривление траектории света более близкой массой приводит к искажению формы удалённого объекта, которое при малом разрешении наблюдения приводит, в основном, к увеличению совокупной яркости удалённого объекта, поэтому данное явление было названо линзированием. Первым примером гравитационного линзирования было получение в 1979 году двух близких изображений одного и того же квазара QSO 0957+16 A, B (z=1,4) английскими астрономами Д. Уолшем и др. «Когда выяснилось, что оба квазара изменяют свой блеск в унисон, астрономы поняли, что в действительности это два изображения одного квазара, обязанные эффекту гравитационной линзы. Вскоре нашли и саму линзу — далёкую галактику (z=0,36), лежащую между Землей и квазаром». С тех пор было найдено много других примеров отдалённых галактик и квазаров, затрагиваемых гравитационным линзированием. Например, известен так называемый Крест Эйнштейна, когда галактика учетверяет изображение далёкого квазара в виде креста.

Специальный тип гравитационного линзирования называется кольцом или дугой Эйнштейна. Кольцо Эйнштейна возникает, когда наблюдаемый объект находится непосредственно позади другого объекта со сферически-симметричным полем тяготения. В этом случае свет от более отдалённого объекта наблюдается как кольцо вокруг более близкого объекта. Если удалённый объект будет немного смещён в одну сторону и/или поле тяготения не сферически-симметричное, то вместо этого появятся частичные кольца, называемые дугами.

Наконец, у любой звезды может увеличиваться яркость, когда перед ней проходит компактный массивный объект. В этом случае увеличенные и искажённые из-за гравитационного отклонения света изображения дальней звезды не могут быть разрешены (они находятся слишком близко друг к другу) и наблюдается просто повышение яркости звезды. Этот эффект называют микролинзированием, и он наблюдается теперь регулярно в рамках проектов, изучающих невидимые тела нашей Галактики по гравитационному микролинзированию света от звёзд — МАСНО, EROS (англ.) и другие.

Чёрные дыры. Чёрная дыра — область, ограниченная так называемым горизонтом событий, которую не может покинуть ни материя, ни информация. Предполагается, что такие области могут образовываться, в частности, как результат коллапса массивных звёзд. Поскольку материя может попадать в чёрную дыру (например, из межзвёздной среды), но не может её покидать, масса чёрной дыры со временем может только возрастать.

Стивен Хокинг, тем не менее, показал, что чёрные дыры могут терять массу за счёт излучения, названного излучением Хокинга. Излучение Хокинга представляет собой квантовый эффект, который не нарушает классическую ОТО.

Известно много кандидатов в чёрные дыры, в частности супермассивный объект, связанный с радиоисточником Стрелец A* в центре нашей Галактики. Подавляющее большинство учёных убеждены, что наблюдаемые астрономические явления, связанные с этим и другими подобными объектами, надёжно подтверждают существование чёрных дыр, однако существуют и другие объяснения: например, вместо чёрных дыр предлагаются бозонные звёзды и другие экзотические объекты.

Орбитальные эффекты.

ОТО корректирует предсказания ньютоновской теории небесной механики относительно динамики гравитационно связанных систем: Солнечная система, двойные звёзды и т. д.

Первый эффект ОТО заключался в том, что перигелии всех планетных орбит будут прецессировать, поскольку гравитационный потенциал Ньютона будет иметь малую релятивистскую добавку, приводящую к формированию незамкнутых орбит. Это предсказание было первым подтверждением ОТО, поскольку величина прецессии, выведенная Эйнштейном в 1916 году, полностью совпала с аномальной прецессией перигелия Меркурия. Таким образом была решена известная в то время проблема небесной механики.

Позже релятивистская прецессия перигелия наблюдалась также у Венеры, Земли, астероида Икар и как более сильный эффект в системах двойных пульсаров. За открытие и исследования первого двойного пульсара PSR B1913+16 в 1974 году Р. Халс и Д. Тейлор получили Нобелевскую премию в 1993 году.

Другой эффект — изменение орбиты, связанное с гравитационным излучением двойной и более кратной системы тел. Этот эффект наблюдается в системах с близко расположенными звёздами и заключается в уменьшении периода обращения. Он играет важную роль в эволюции близких двойных и кратных звёзд. Эффект впервые наблюдался в вышеупомянутой системе PSR B1913+16 и с точностью до 0,2 % совпал с предсказаниями ОТО.

Ещё один эффект — геодезическая прецессия. Она представляет собой прецессию полюсов вращающегося объекта в силу эффектов параллельного перенесения в искривлённом пространстве-времени. Данный эффект отсутствует в ньютоновской теории тяготения. Предсказание геодезической прецессии было проверено в эксперименте с зондом НАСА «Грэвити Проуб Би» (Gravity Probe B). Руководитель исследований данных, полученных зондом, Фрэнсис Эверитт на пленарном заседании Американского физического общества 14 апреля 2007 года заявил о том, что анализ данных гироскопов позволил подтвердить предсказанную Эйнштейном геодезическую прецессию с точностью, превосходящей 1 %.

Увлечение инерциальных систем отсчёта. Увлечение инерциальных систем отсчёта вращающимся телом заключается в том, что вращающийся массивный объект «тянет» пространство-время в направлении своего вращения: удалённый наблюдатель в покое относительно центра масс вращающегося тела обнаружит, что самыми быстрыми часами (то есть покоящимися относительно локально-инерциальной системы отсчёта) на фиксированном расстоянии от объекта являются часы, имеющие компоненту движения вокруг вращающегося объекта в направлении вращения, а не те, которые находятся в покое относительно наблюдателя, как это происходит для невращающегося массивного объекта. Точно так же удалённым наблюдателем будет установлено, что свет двигается быстрее в направлении вращения объекта, чем против его вращения. Увлечение инерциальных систем отсчёта также вызовет изменение ориентации гироскопа во времени. Для космического корабля на полярной орбите направление этого эффекта перпендикулярно геодезической прецессии, упомянутой выше.

Поскольку эффект увлечения инерциальных систем отсчёта в 170 раз слабее эффекта геодезической прецессии, стэнфордские учёные пока по-прежнему извлекают его «отпечатки» из информации, полученной зондом «Грэвити Проуб Би» (Gravity Probe B).

Другие предсказания. Эквивалентность инерционной и гравитационной массы: следствие того, что свободное падение — движение по инерции. Принцип эквивалентности: даже самогравитирующий объект отзовётся на внешнее поле тяготения в той же мере, что и тестовая частица. Гравитационное излучение: вращение двойных звёзд и планет, а также процессы слияния нейтронных звёзд и/или чёрных дыр, как ожидается, должны сопровождаться излучением гравитационых волн.

Слияние двойных пульсаров может создавать гравитационные волны, достаточно сильные, чтобы наблюдаться на Земле. На 2009 год существуют (или будут в ближайшее время построены) несколько гравитационных телескопов для наблюдения подобных волн, однако пока имеются лишь косвенные доказательства существования гравитационного излучения в виде измерений темпа потери энергии вращения тесными двойными звёздами. Гравитоны. Согласно квантовой механике, гравитационное излучение должно быть составлено из квантов, названных гравитонами. ОТО предсказывает, что они будут безмассовыми частицами со спином, равным 2. Обнаружение отдельных гравитонов в экспериментах связано со значительными проблемами, так что существование квантов гравитационного поля до сих пор (2009 год) не показано.

Вопрос 20.

Постулаты Эйнштейна. 1 постулат Эйнштейна или принцип относительности: все законы природы инвариантны по отношению ко всем инерциальным системам отсчета. Все физические, химические, биологические явления протекают во всех инерциальных системах отсчета одинаково. 2 постулат или принцип постоянства скорости света: скорость света в вакууме постоянна и одинакова по отношении» к любым инерциальным системам отсчета. Она не зависит ни от скорости источника света, ни от скорости его приемника. Ни один материальный объект не может двигаться со скоростью, превышающей скорость света в вакууме. Более того, пи одна частица вещества, т.е. частица с массой покоя, отличной от нуля, не может достичь скорости света в вакууме, с такой скоростью могут двигаться лишь полевые частицы, т.е. частицы с массой покоя, равной нулю. Анализируя 1 постулат Эйнштейна, мы видим, что Эйнштейн расширил рамки принципа относительности Галилея, распространив его на любые физические явления, в том числе и на электромагнитные. 1 постулат Эйнштейна непосредственно вытекает из опыта Майкельсона-Морли, доказавшего отсутствие в природе абсолютной системы отсчета. Из результатов этого нее опыта следует и 2 постулат Эйнштейна о постоянстве скорости света в вакууме, который тем не менее вступает в противоречие с 1 постулатом, если распространить на электромагнитные явления не только сам принцип относительности Галилея, но и галилеево правило сложения скоростей, вытекающее из правила Галлилея преобразования координат (см. п. 10). Следовательно, преобразования Галилея для координат и времени, а также его правило сложения скоростей к электромагнитным явлениям неприменимы.

Преобразования Лоренца. Исходя из сформулированных выше постулатов теории относительности Эйнштейна, можно найти законы преобразований, связывающие межу собой пространственные координаты и время в двух системах отсчета, движущихся прямолинейно и равномерно относительно друг друга.


Пусть х, у, z, и х’, у’, z’ и t’,- координаты и время в инерциальных систем отсчета K и K’, а v - скорость их относительного движения (рис. 6.1).

При этом нет никаких оснований полагать, что время в системе K’ совпадает со временем в системе K, как это безоговорочно принималось в классической физике. Для просторы выкладок выберем направление скорости за направление осей х и x’. Предположим, что в некоторый момент времени t’ в точке скоординатами x’,y’,z’происходит некоторый физический процесс, который назовем событием. Нашей задачей является нахождение «координат» события в системе отсчета K’, т.е. нахождение величин х, y, z, t, характеризующих тот же физический процесс в системе K.

Выберем за начало отсчета времени t=0 тот момент, в который начало координат системы K’ совпадало с началом координат системы K. Пусть в момент времени t=0 из начала координат начала распространяться сферическая электромагнитная волна (рис.6.2). В системе K уравнение волновой поверхности имеет вид. x2+y2+z2=c2t2 или x2+y2+z2-c2t2=0 Поскольку, согласно принципу относительности Эйнштейна, закон и величина скорости распространения волны должны быть одинаковыми во всех инерциальных системах отсчета, наряду с этим уравнением с равным правом можно написать уравнение сферической волны в системе K’.(x’)2+(y’)2+(z’)2-c2(t’)2=0. Так как в начальный момент времени начало координат систем совпадали, то

x’2+y’2+z’2-c2t’2=x2+y2+z2-c2t2. Формулы преобразования координат и времени должны, во-первых, не нарушать соотношений (6.1) и (6.2), а, во-вторых, быть линейными. Требования линейности связано с однородностью пространства. Т.к. движение системы K’ происходит только вдоль оси х преобразование координат у и z должно иметь вид y’=y, z’=z.

Закон преобразования х’ через х можно написать, исходя из следующего соображения: если в момент времени t=0 начала систем координат K и K’ совпадали, то координата плоскости х’ в системе K запишется х=νt. Следовательно, в самом общем случае можно написать x’=a(v)(x-vt), где коэффициент a(v) может зависеть лишь от скорости относительного движения. Не делая никаких произвольных допущений о совпадении времени в двух системах отсчета, мы можем представить t’ в виде линейной однородной функции х и t: t’=βt+yx.

Kоэффициенты β и y могут, вообще говоря, зависеть от скорости v. Если бы оказалось, что y=0, а β=1, то мы вернулись бы к преобразованиям Галилея. Для определения коэффициентов a, β и y, отвечающих Требованиям принципа относительности Эйнштейна, мы должны подставить (6.3) и (6.5) в (6.2). Это дает a2(x-vt)2+y2+z2-c2(βt+yx)2=x2+y2+z2-c2t2.

Для выполнения тождества необходимо приравнять коэффициенты при х2,t2и хt. Раскрыв скобки и проведя соответствующие преобразования получим: a2-c2y2=1; a2v2-c2β2=-c2;; a2v2-c2β2y=0 Из этих трех уравнений находим неизвестные величины a, β и y,:

; При этом всюду мы выбрали положительный знак корня. Подставляя значения , и в преобразования координат (6.3) и (6.4) находим:

Эти формулы носят название преобразований Лоренца. Преобразования Лоренца приводят к выводам, коренным образом противоречащим привычным представлениям о свойствах времени и пространства, сложившимся на основе повседневного опыта. Рассмотрим несколько примеров применения преобразований Лоренца.

 

Вопрос 21.



Поделиться:


Последнее изменение этой страницы: 2016-12-12; просмотров: 220; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.10.14 (0.024 с.)