Контрольные работы и методические указания по общей физике 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Контрольные работы и методические указания по общей физике

Поиск

КОНТРОЛЬНЫЕ РАБОТЫ И МЕТОДИЧЕСКИЕ УКАЗАНИЯ ПО ОБЩЕЙ ФИЗИКЕ

ДЛЯ СТУДЕНТОВ ЗАОЧНОГО ОТДЕЛЕНИЯ ИНЖЕНЕРНО-ТЕХНИЧЕСКИХ И ИНЖЕНЕРНО-ПЕДАГОГИЧЕСКИХ СПЕЦИАЛЬНОСТЕЙ

 

В трех частях

 

Часть III “Оптика, Элементы атомной и ядерной физики”

 

 

М и н с к 2 0 0 1


УДК 53 (075.4)

Бумай Ю.А., Вилькоцкий В.А., Доманевский Д.С., Малаховская В.Э., Новоселов А.М. Контрольные работы и методические указания по общей физике для студентов заочного отделения инженерно-технических и инженерно-педагогических специальностей. Часть III “Оптика, элементы атомной и ядерной физики” - Мн.:БГПА, 2001.- 53 с.

 

Методическое пособие предназначено для самостоятельной работы и контроля знаний по разделам “Оптика”, “Атомная и ядерная физика” учебной дисциплины ”Общая физика” для студентов заочного отделения инженерно-технических и инженерно-педагогических специальностей БГПА. В пособие включена рабочая программа дисциплины по данным разделам, набор задач и таблицы вариантов контрольных работ, а также основные понятия, формулы и справочные значения физико-химических величин, необходимые для выполнения контрольных работ. Пособие может быть использовано также для контроля знаний по соответствующим разделам общей физики студентов дневной формы обучения.

 

 

Рецензент Д.А.Русакевич

 

 

ã Ю.А.Бумай, В.А.Вилькоцкий, Д.С.Доманевский, В.Э.Малаховская, А.М.Новоселов 2001


СОДЕРЖАНИЕ

 

Общие методические указания к выполнению контрольных работ……………………………………  
Раздел “Оптика, элементы атомной и ядерной физики” рабочей программы курса общей физики………………………………………………….    
Рекомендуемая литература…………………………...  
Учебные материалы…………………………………..  
1.Оптика, элементы атомной и ядерной физики ………………… ………………...  
1.1. Основные понятия и формулы………..  
1.2. Контрольные задачи …………………..  
2. Таблицы вариантов контрольных работ….  
Приложения…………………………………………...  

 


РАЗДЕЛЫ “ОПТИКА, ЭЛЕМЕНТЫ АТОМНОЙ И ЯДЕРНОЙ ФИЗИКИ” РАБОЧЕЙ ПРОГРАММЫ КУРСА ОБЩЕЙ ФИЗИКИ

 

Рабочая программа предназначена для специальностей инженерно-технического (приборостроительного, машиностроительного) и инженерно-педагогического профиля.

 

Оптика

Введение. Предмет оптики и эволюция представлений о природе света.

Геометрическая оптика. Границы применимости геометрической оптики. Понятие оптического луча. Законы геометрической оптики. Центрированная оптическая система. Кардинальные элементы центрированной оптической системы: фокусы, фокальные плоскости, главные плоскости и главные точки, узлы. Формула оптической системы. Диафрагмы. Действующая диафрагма. Входной и выходной зрачок оптической системы. Светосила оптической системы. Тонкая линза. Построение изображений в оптических системах. Лупа, зрительная труба, микроскоп. Глаз и зрение.

Интерференция световых волн. Когерентность. Временная и пространственная когерентность. Способы наблюдения интерференции света. Классические интерференционные опыты: бипризма Френеля, бизеркала Френеля, опыт Юнга, интерференция в тонких пленках, кольца Ньютона. Интерферометры. Многолучевая интерференция. Просветленная оптика и другие практические применения интерференции.

Дифракция света. Принцип Гюйгенса-Френеля. Дифракция Френеля. Метод зон Френеля. Дифракция Френеля на простейших преградах (круглом отверстии, крае полуплоскости). Спираль Корню. Дифракция Фраунгофера на щели и на системе щелей. Дифракционные решетки. Разновидности дифракционных решеток (амплитудные, фазовые, пропускающие, отражающие). Особенности изготовления дифракционных решеток, реплики. Применение дифракционных решеток.

Фотометрия и термодинамика излучения. Основные фотометрические величины (поток лучистой энергии, сила света, яркость, освещенность). Источники Ламберта. Особенности восприятия излучения человеческим глазом. Фотометрические и светотехнические величины. Функция видности. Тепловое излучение. Закон Кирхгофа. Энергетическая светимость. Испускательная и поглощательная способность тела. Абсолютно черное тело. Законы излучения абсолютно черного тела (формула Планка, закон Стефана-Больцмана, закон Вина). Оптическая пирометрия. Методы оптического измерения температуры.

Поляризация света. Поляризованный свет. Плоскополяризованный свет, свет, поляризованный по кругу и эллипсу. Получение поляризованного света. Двойное лучепреломление в кристаллах. Призма Николя. Поляризация света при отражении. Угол Брюстера, закон Брюстера. Оптически активные среды. Вращение плоскости поляризации.

Дисперсия света. Явление дисперсии. Опыты Ньютона. Нормальная и аномальная дисперсии. Электронная теория дисперсии.

Перенос излучения в мутных средах. Классификация мутных сред (дымы, туманы, взвеси, суспензии, мутные твердые тела). Ослабление излучения в мутных средах. Поглощение и рассеяние излучения. Закон Бугера.

Квантовые свойства света. Фотоэффект и уравнение Эйнштейна. Внешний и внутренний фотоэффект. Фотогальванический эффект. Эффект Комптона и импульс фотона. Элементарная теория эффекта Комптона. Давление света. Опыты Лебедева.

Фотохимическое действие света. Фотохимическое действие света. Законы фотохимии. Сенсибилизаторы. Физические основы фотографии. Цветная фотография. Голография. Физические принципы и техническая реализация голографии.

Элементы атомной физики

Строение атома. Опыты Резерфорда. Постулаты Бора. Теория водородного атома. Спектральные серии и уровни энергии. Недостатки теории Бора. Гипотеза де Бройля. Волновая функция. Уравнение Шредингера. Квантование энергии на примере частицы в бесконечно глубокой потенциальной яме. Спонтанное и вынужденное излучение. Лазеры. Свойства лазерного излучения и его применение в технологических процессах. Элементы нелинейной оптики.

Элементы ядерной физики

Атомное ядро. Ядерные реакции. Закон радиоактивного распада. Цепная реакция деления ядер. Ядерные реакторы. Термоядерная реакция синтеза. Проблема источников энергии и возможные пути ее решения.

 

 

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

Основная

1. Савельев И.В. Курс общей физики. Т.3,2. М.: Наука, 1977-1979.

2. Зисман Г.А., Тодес О.М. Курс общей физики. М.: Наука, 1972-1974, Т.3; Киев: Днiпро, 1994, Т.3.

3. Трофимова Т.И. Курс физики. М.: Высшая школа, 1985.

4. Детлаф А.А., Яворский Б.М., Милковская Л.Б. Курс физики. Т.3. М.: Высшая школа, 1973-1979.

5. Сивухин Д.В. Общий курс физики. Т.4, Оптика. М., Наука, 1985.

6. Саржевский А.М.. Оптика. Минск, Изд. Университетское, 1984.

7. Чертов А.Г., Воробьев А.А., Федоров М.Ф. Задачник по физике. М.: Высшая школа, 1981.

8. Волькенштейн В.С. Сборник задач по общему курсу физики. М.: Наука, 1979.

9. Савельев И.В. Сборник вопросов и задач по общему курсу физики. М.: Наука, 1982.

 

Дополнительная

1. Лансберг Г.С. Оптика. М.: Наука, 1976.

2. Фейнман Р., Лейтон С. Фейнмановские лекции по физике. М.: Мир, 1977, вып. 3.

3. Бутиков Е.И.. Оптика. М., Высшая школа, 1986.

4. Калитеевский Н.И. Волновая оптика. -М.: Высшая школа, 1978.

5. Шпольский Э. В. Атомная физика. -М.: Наука, 1974, Т.1-2.

6. Китайгородский А.И. Введение в физику. М.: Наука 1973.

7. Сена Л.А. Единицы физических величин и их размерности. М.: Наука, 1977.

8. Чертов А.Г. Единицы физических величин. М.: Высшая школа, 1977.

9. Яворский Б.М., Детлаф А.А. Справочник по физике для инженеров и студентов вузов. М.: Наука, 1979.

10. Кошкин Н., Васильчикова Е. Элементарная физика. Справочник. М.: АО Столетие, 1996.

 

Учебные материалы

Основные понятия и формулы

Скорость света в среде

,

где с — скорость света в вакууме; п — показатель преломления среды.

Контрольные задачи

1. На пути пучка света поставлена стеклянная пластина толщиной d =1 мм так, что угол падения луча i 1=30°. На сколько изменится оптическая длина пути светового пучка?

2. На мыльную пленку с показателем преломления п =1,33 падает по нормали монохроматический свет с длиной волны l=0,6 мкм. Отраженный свет в результате интерференции имеет наибольшую яркость. Какова наименьшая возможная толщина d min пленки?

3. Между стеклянной пластинкой и лежащей на ней плосковыпуклой линзой находится жидкость. Найти показатель преломления жидкости, если радиус r 3 третьего темного кольца Ньютона при наблюдении в отраженном те с длиной волны l=0,6 мкм равен 0,82 мм. Радиус кривизны линзы R =0,5 м.

4. Радиус второго темного кольца Ньютона в отраженном свете r 2=0,4 мм. Определить радиус R кривизны плосковыпуклой линзы, взятой для опыта, если она освещается монохроматическим светом с длиной волны l=0,64 мкм.

5. На тонкую пленку в направлении нормали к ее поверхности падает монохроматический свет с длиной волны l=500 нм. Отраженный от нее свет максимально усилен вследствие интерференции. Определить минимальную толщину d min пленки, если показатель преломления материала пленки п =1,4.

6. Расстояние L от щелей до экрана в опыте Юнга равно 1 м. Определить расстояние между щелями, если на отрезке длиной l =1 см укладывается N =10 темных интерференционных полос. Длина волны l=0,7 мкм.

7. На стеклянную пластину положена выпуклой стороной плосковыпуклая линза. Сверху линза освещена монохроматическим светом длиной волны l=500 нм, найти радиус R линзы, если радиус четвертого, темного кольца Ньютона в отраженном свете r 4=2 мм.

8. На тонкую глицериновую пленку толщиной d =1,5 мкм нормально к ее поверхности падает белый свет. Определить длины волн лучей видимого участка спектра (0,4<l<0,8 мкм), которые будут ослаблены в результате интерференции.

9. На стеклянную пластину нанесен тонкий слой прозрачного вещества с показателем преломления п =1,3. Пластинка освещена параллельным пучком монохроматического света с длиной волны l=640 нм, падающим на пластинку нормально. Какую минимальную толщину d min должен иметь слой, чтобы отраженный пучок имел наименьшую яркость?

10. На тонкий стеклянный клин падает нормально параллельный пучок света с длиной волны l=500 нм. Расстояние между соседними темными интерференционными полосами в отраженном свете b =0,5 мм. Определить угол a между поверхностями клина. Показатель преломления стекла, из которого изготовлен клин, п =1,6.

11. Плосковыпуклая стеклянная линза с фокусным расстоянием F =1 м лежит выпуклой стороной на стеклянной пластинке. Радиус пятого темного кольца Ньютона в отраженном свете r 5=1,1 мм. Определить длину световой волны l.

12. Между двумя плоскопараллельными пластинами на расстоянии L =10 см от границы их соприкосновения находится проволока диаметром d =0,01 мм, образуя воздушный клин. Пластины освещаются нормально падающим монохроматическим светом (l=0,6 мкм). Определить ширину b интерференционных полос, наблюдаемых в отраженном свете.

13. Установка для наблюдения колец Ньютона освещается нормально падающим монохроматическим светом (l=590 нм). Радиус кривизны R линзы равен 5 см. Определить толщину d 3 воздушного промежутка в том месте, где в отраженном свете наблюдается третье светлое кольцо.

14. Точечный источник света с l=500 нм помещен на расстоянии а =0,500 м перед непрозрачной преградой с отверстием радиуса r =0,500 мм. Определить расстояние b от преграды до точки, для которой число m открываемых отверстием зон Френеля будет равно: а) 1, б) 5, в) 10.

15. Точечный источник света с l=550 нм помещен на расстоянии а =1,00 м перед непрозрачной преградой с отверстием радиуса r =2,00 мм.

а) Какое минимальное число m min открытых зон Френеля может наблюдаться при этих условиях?

б) При каком значении расстояния b от преграды до точки наблюдения получается минимально возможное число открытых зон?

в) При каком радиусе r отверстия может оказаться в условиях данной задачи открытой только одна центральная зона Френеля?

16. Исходя из определения зон Френеля, найти число m зон Френеля, которые открывает отверстие радиуса r для точки, находящейся на расстоянии b от центра отверстия, в случае если волна, падающая на отверстие, плоская.

17. На непрозрачную преграду с отверстием радиуса r =1,000 мм падает плоская монохроматическая световая волна. Когда расстояние от преграды до установленного за ней экрана равно b 1=0,575 м, в центре дифракционной картины наблюдается максимум интенсивности. При увеличении расстояния до значения b 2=0,862 м максимум интенсивности сменяется минимумом. Определить длину волны λ света.

18. Интенсивность, создаваемая на экране некоторой монохроматической световой волной в отсутствие преград, равна I o. Какова будет интенсивность I в центре дифракционной картины, если на пути волны поставить преграду с круглым отверстием, открывающим: а) 1-ю зону Френеля, б) половину 1-й зоны Френеля, в) полторы зоны Френеля, г) треть 1-й зоны Френеля?

19. Свет от монохроматического источника (λ=0,6 мкм) падает нормально на диафрагму с круглым отверстием. Диаметр отверстия 6 мм. За диафрагмой на расстоянии 3 м от нее находится экран. 1) Сколько зон Френеля укладывается в отверстии диафрагмы? 2) Каким будет центр дифракционной картины на экране: темным или светлым?

20. Вычислить радиусы первых пяти зон Френеля, если расстояние от источника света до волновой поверхности равно 1 м, расстояние от волновой поверхности до точки наблюдения также равно 1 м и λ=5·10-7 м.

21. Вычислить радиусы первых пяти зон Френеля для случая плоской волны. Расстояние от волновой поверхности до точки наблюдения равно 1 м. Длина волны λ=5·10-7 м.

22. Дифракционная картина наблюдается на расстоянии l от точечного источника монохроматического света (λ=6·10-5 см). На расстоянии 0,5 l от источника помещена круглая непрозрачная преграда диаметром 1 см. Чему равно расстояние l, если преграда закрывает только центральную зону Френеля?

23. На пластину с щелью, ширина которой а =0,05 мм, падает нормально монохроматический свет с длиной волны l=0,7 мкм. Определить угол j отклонения лучей, соответствующий первому дифракционному максимуму.

24. Какое наименьшее число N min штрихов должна содержать дифракционная решетка, чтобы в спектре второго порядка можно было видеть раздельно две желтые линии натрия с длинами волн l1=589,0 нм и l2=589,6 нм? Какова длина l такой решетки, если постоянная решетки d =5 мкм?

25. Дифракционная решетка, освещенная нормально падающим монохроматическим светом, отклоняет спектр третьего порядка на угол j1=30°. На какой угол j2 отклоняет она спектр четвертого порядка?

26. На поверхность дифракционной решетки нормально к ее поверхности падает монохроматический свет. Постоянная дифракционной решетки в п =4,6 раза больше длины световой волны. Найти общее число m max дифракционных максимумов, которые теоретически можно наблюдать в данном случае.

27. На дифракционную решетку падает нормально параллельный пучок белого света. Спектры третьего и четвертого порядка частично накладываются друг на друга. На какую длину волны в спектре четвертого порядка накладывается граница (l=780 нм) спектра третьего порядка?

28. На дифракционную решетку, содержащую п =600 штрихов на миллиметр, падает нормально белый свет. Спектр проецируется помещенной вблизи решетки линзой на экран. Определить длину l спектра первого порядка на экране, если расстояние от линзы до экрана 11,2 м. Границы видимого спектра: lкр=780 нм, lф=400 нм.

29. На грань кристалла каменной соли падает параллельный пучок рентгеновского излучения. Расстояние между атомными плоскостями равно 280 пм. Под углом в q=65° к атомной плоскости наблюдается дифракционный максимум первого порядка. Определить длину волны l рентгеновского излучения.

30. На непрозрачную пластину с узкой щелью падает нормально плоская монохроматическая световая волна (l=600 нм). Угол отклонения лучей, соответствует второму дифракционному максимуму, j=20°. Определить ширину а щели.

31. На дифракционную решетку, содержащую п =100 штрихов на 1 мм, нормально падает монохроматический свет. Зрительная труба спектрометра наведена на максимум второго порядка. Чтобы навести трубу на другой максимум того же порядка, ее нужно повернуть на угол Dj=16°. Определить длину волны l света, падающего на решетку.

32. На дифракционную решетку падает нормально монохроматический свет (l=410 нм). Угол Dj между направлениями на максимумы первого и второго порядка равен 2°21". Определить число п штрихов на 1 мм дифракционной решетки.

33. Постоянная дифракционной решетки в п =4 раза больше длины световой волны монохроматического света, нормально падающего на ее поверхность. Определить угол a. между двумя первыми симметричными дифракционными максимумами.

34. Расстояние между штрихами дифракционной решетки d =4 мкм. На решетку падает нормально свет длиной волны l=0,58 мкм. Максимум какого наибольшего порядка дает эта решетка?

35. Определить угловую дисперсию дифракционной решетки для λ=589 нм в спектре первого порядка. Постоянная решетки равна 2,5·10-4 см.

36. Угловая дисперсия дифракционной решетки для λ=668 нм в спектре первого порядка равна 2,02·105 рад/м. Найти период дифракционной решетки.

37. Найти линейную дисперсию (в мм/нм) дифракционной решетки предыдущей задачи, если фокусное расстояние линзы, проектирующей спектр на экран, равно 40 см.

38. На каком расстоянии друг от друга будут находиться на экране две линии ртутной дуги (λ1=577 нм и λ2=579,1 нм) в спектре первого порядка, полученном при помощи дифракционной решетки с периодом 2·10-4 см? Фокусное расстояние линзы, проектирующей спектр на экран, равно 0,6 м.

39. На дифракционную решетку нормально падает пучок света. Красная линия (λ.=630 нм) видна в спектре третьего порядка под углом φ=60°.

Какая спектральная линия видна под этим же углом в спектре четвертого порядка? 2) Какое число штрихов на 1 мм, длины имеет дифракционная решетка? 3) Чему равна угловая дисперсия этой решетки для линии λ=630 нм в спектре третьего порядка?

40. Для какой длины волны дифракционная решетка с постоянной d =5 мкм имеет угловую дисперсию D = 6,3·105 рад/м в спектре третьего порядка?

41. Почему в случае отражательной решетки удается наблюдать дифракционные максимумы малых порядков при периодах решетки d, много больших длины волны λ, например, при d ~ l мм?

42. Можно ли различить невооруженным глазом два находящихся на расстоянии 5 км столба, отстоящих друг от друга на 1 м? Диаметр зрачка принять равным 4 мм.

43. В зрительную трубу рассматривается лунная поверхность. Диаметр объектива трубы d =4,00 см. При каком минимальном расстоянии a min между двумя кратерами их можно увидеть раздельно? Длину световой волны принять равной 600 нм.

44. Пластинку кварца толщиной d =2 мм поместили между параллельными призмами Николя, в результате чего плоскость поляризации монохроматического света повернулась на угол j=53°. Какой наименьшей толщины следует взять пластинку, чтобы поле зрения поляризатора стало совершенно темным?

45. Параллельный пучок света переходит из глицерина в стекло так, что пучок, отраженный от границы раздела этих сред, оказывается максимально поляризованным. Определить угол j между падающим и преломленным пучками.

46. Кварцевую пластинку поместили между скрещенными призмами Николя. При какой наименьшей толщине d minкварцевой пластины поле зрения между призмами Николя будет максимально просветлено? Постоянная вращения a кварца равна 27 град/мм.

47. При прохождении света через трубку длиной l 1=20 см, содержащую раствор сахара концентрацией C 1=10%, плоскость поляризации света повернулась на угол j1=13,3°. В другом растворе сахара, налитом в трубку длиной l 2=15 см, плоскость поляризации повернулась на угол j2=5,2°. Определить концентрацию C 2 второго раствора.

48. Пучок света последовательно проходит через две призмы Николя, плоскости пропускания которых образуют между собой угол j=40°. Принимая, что коэффициент поглощения k каждой призмы равен 0,15, найти, во сколько раз пучок света, выходящий из второй призмы ослаблен по сравнению с пучком, падающим на первую призму.

49. На сколько процентов уменьшается интенсивность света после прохождения через призму Николя, если потери света составляют 10%?

50. Угол падения e1 луча на поверхность стекла равен 60°. При этом отраженный пучок света оказался максимально поляризованным. Определить угол e2 преломления луча.

51. Угол преломления луча в жидкости i 2=35°. Определить показатель преломления п жидкости, если известно, что отраженный пучок света максимально поляризован.

52. Угол a между плоскостями пропускания поляроидов равен 50°. Естественный свет, проходя через такую систему, ослабляется в п =8 раз. Пренебрегая потерей света при отражении, определить коэффициент поглощения k света в поляроидах.

53. Пучок света, идущий в стеклянном сосуде с глицерином, отражается от дна сосуда. При каком угле e падения отраженный пучок света максимально поляризован?

54. Пучок света переходит из жидкости в стекло. Угол падения e1 пучка равен 60°, угол преломления e2=50°. При каком угле падения eB пучок света, отраженный от границы раздела этих сред, будет максимально поляризован?

55. Пучок света падает на плоскопараллельную стеклянную пластину, нижняя поверхность которой находится в воде. При каком угле падения eB свет, щаженный от границы стекло—вода, будет максимально поляризован?

56. Частица движется со скоростью v = с /3, где c — скорость света в вакууме. Какую долю энергии покоя составляет кинетическая энергия частицы?

57. При какой скорости b (в долях скорости света) релятивистская масса любой частицы вещества в п =3 paза больше массы покоя?

58. Определить отношение релятивистского импульса электрона с кинетической энергией T =1,53 МэВ к комптоновскому импульсу m o c электрона.

59. Скорость электрона v =0,8 с (где с — скорость света в вакууме). Зная энергию покоя электрона в единицах МэВ, определить в тех же единицах кинетическую энергию Т электрона.

60. Протон имеет импульс р =469 МэВ/с. Какую кинетическую энергию необходимо дополнительно сообщить протону, чтобы его релятивистский импульс возрос вдвое? (1 МэВ/с=5,33х10-22 кг м/с)

61. Во сколько раз релятивистская масса m электрона, обладающего кинетической энергией Т =1,53 МэВ, больше массы покоя m o?

62. Какую скорость b (в долях скорости света) нужно сообщить частице, чтобы ее кинетическая энергия была равна удвоенной энергии покоя?

63. При какой скорости v релятивистская масса частицы в k =3 раза больше массы покоя этой частицы?

64. Релятивистский электрон имел импульс р 1 o c. Определить конечный импульс этого электрона (в единицах т o c), если его энергия увеличилась в n =2 раза.

65. Определить скорость v электрона, имеющего кинетическую энергию Т =1,53 МэВ.

66. Релятивистский протон обладал кинетической энергией, равной энергии покоя. Определить, во сколько раз возрастет его кинетическая энергия, если его импульс увеличится в п =2 раза.

67. Электрон движется, со скоростью v =0,6 с, где с — скорость света в вакууме. Определить релятивистский импульс р электрона.

68. Вычислить истинную температуру Т вольфрамовой раскаленной ленты, если радиационный пирометр показывает температуру T рад=2,5 кК. Принять, что поглощательная способность для вольфрама не зависит от частоты излучения и равна a =0,35.

69. Вычислить энергию, излучаемую за время t =1 мин с площади S =l см2 абсолютно черного тела, температура которого T =1000 К.

70. Черное тело имеет температуру Т 1=500 К. Какова будет температура Т 2 тела, если в результате нагревания поток излучения увеличится в п =5 раз?

71. Длина волны, на которую приходится максимум энергии излучения абсолютно черного тела, lm=0,6 мкм. Определить температуру Т тела.

72. Температура абсолютно черного тела Т =2 кК. Определить длину волны lm, на которую приходится максимум энергии излучения, и спектральную плотность энергетической светимости (rl,T)maxдля этой длины волны.

73. Определить максимальную спектральную плотность (rl,T)max энергетической светимости, рассчитанную на 1 нм в спектре излучения абсолютно черного тела. Температура тела Т =1 К.

74. Определить температуру Т и энергетическую светимость Re абсолютно черного тела, если максимум энергии излучения приходится на длину волны lm=600 нм.

75. Из смотрового окошечка печи излучается поток Фе =4 кДж/мин. Определить температуру Т печи, если площадь окошечка S =8 см2.

76. Поток излучения абсолютно черного тела Фе =10 кВт. Максимум энергии излучения приходится на длину волны lm=0,8 мкм. Определить площадь S излучающей поверхности.

77. Как и во сколько раз изменится поток излучения абсолютно черного тела, если максимум энергии излучения переместится с красной границы видимого спектра (lm1=780 нм) на фиолетовую (lm2=390 нм)?

78. Определить поглощательную способность а серого тела, для которого температура, измеренная радиационным пирометром, T рад=1,4 кК, тогда как истинная температура Т тела равна 3,2 кК.

79. Муфельная печь, потребляющая мощность Р =1 кВт, имеет отверстие площадью S =100 см2. Определить долю h мощности, рассеиваемой стенками печи, если температура ее внутренней поверхности равна 1 кК.

80. Средняя энергетическая светимость R поверхности Земли равна 0,54 Дж/(см2 мин). Какова должна быть температура Т поверхности Земли, если условно считать, что она излучает как серое тело с коэффициентом черноты а =0,25?

81. Определить энергию e, массу m и импульс р фотона с длиной волны l=1,24 нм.

82. Красная граница фотоэффекта для цинка lo=310 нм. Определить максимальную кинетическую энергию T max фотоэлектронов в электрон-вольтах, если на цинк падает свет с длиной волны l=200 нм.

83. На поверхность калия падает свет с длиной волны l=150 нм. Определить максимальную кинетическую энергию T max фотоэлектронов.

84. Фотон с энергией e=10 эВ падает на серебряную пластину и вызывает фотоэффект. Определить импульс р, полученный пластиной, если принять, что направления движения фотона и фотоэлектрона лежат на одной прямой, перпендикулярной поверхности пластин.

85. На фотоэлемент с катодом из лития падает свет длиной волны l=200 нм. Найти наименьшее значение задерживающей разности потенциалов U min, которую нужно приложить к фотоэлементу, чтобы прекратить фототок.

86. На пластину падает монохроматический свет (l=0,42 мкм). Фототок прекращается при задерживающей разности потенциалов U =0,95 В. Определить работу А выхода электронов с поверхности пластины.

87. Какова должна быть длина волны излучения, падающего на платиновую пластину, чтобы максимальная скорость фотоэлектронов была v max=3 Мм/с?

88. На цинковую пластину падает пучок ультрафиолетового излучения (l=0,2 мкм). Определить максимальную кинетическую энергию T max и максимальную скорость v max фотоэлектронов.

89. На металлическую пластину направлен пучок ультрафиолетового излучения (l=0,25 мкм). Фототок прекращается при минимальной задерживающей разности потенциалов U min=0,96 В. Определить работу выхода А электронов из металла.

90. Определить максимальную скорость v max фотоэлектрона, вырванного с поверхности металла g-квантом с энергией e=1,53 МэВ.

91. На поверхность металла падает монохроматический свет с длиной волны l=0,1 мкм. Красная граница фото эффекта lo = 0,3 мкм. Какая доля энергии фотона расходуется на сообщение электрону кинетической энергии?

92. На металл падает рентгеновское излучение с длиной волны l=1 нм. Пренебрегая работой выхода, определить максимальную скорость v max фотоэлектронов.

93. На металлическую пластину направлен монохроматический пучок света с частотой n=7,3 1014 Гц. Красная граница lo фотоэффекта для данного материала равна 560 нм. Определить максимальную скорость v maxфотоэлектронов.

94. На цинковую пластину направлен монохроматический пучок света. Фототок прекращается при задерживающей разности потенциалов U =1,5 В. Определить длину волны l света, падающего на пластину.

95. Определить угол q рассеяния фотона, испытавшего соударение со свободным электроном, если изменение длины волны при рассеянии Dl=3,63 пм.

96. Фотон при эффекте Комптона на свободном электроне был рассеян на угол q=p/2. Определить Импульс р (в МэВ/с), приобретенный электроном, если энергия фотона до рассеяния была e1=1,02 МэВ (1 МэВ/с=5,33х10-22 кг м/с).

97. Рентгеновское излучение (l=1 нм) рассеивается электронами, которые можно считать практически свободными. Определить максимальную длину волны lmaxрентгеновского излучения в рассеянном пучке.

98. Фотон с энергией e1, равной энергии покоя электрона о с 2 ), рассеялся на свободном электроне на угол q=120°. Определить энергию e2 рассеянного фотона и кинетическую энергию Т электрона отдачи (в единицах т о с 2).

99. Какая доля энергии фотона приходится при эффекте Комптона на электрон отдачи, если рассеяние фотона происходит на угол q=p/2? Энергия фотона до рассеяния e1=0,51 МэВ.

100. Определить максимальное изменение длины волны (Dl)max, при комптоновском рассеянии света на свободных электронах и свободных протонах.

101. Фотон с длиной волны l1=15 пм рассеялся на свободном электроне. Длина волны рассеянного фотона l2=16 пм. Определить угол q рассеяния.

102. Фотон с энергией e1=0,51 МэВ был рассеян при эффекте Комптона на свободном электроне на угол q=180°. Определить кинетическую энергию T электрона отдачи.

103. В результате эффекта Комптона фотон с энергией e1=1,02 МэВ рассеян на свободных электронах на угол q=150°. Определить энергию e1 рассеянного фотона.

104. Определить угол q, на который был рассеян квант с энергией e1=1,53 МэВ при эффекте Комптона, если кинетическая энергия электрона отдачи T =0,51 МэВ.

105. Фотон с энергией e1=0,51 МэВ при рассеянии на свободном электроне потерял половину своей энергии. Определить угол рассеяния q.

106. Определить импульс ре электрона отдачи, если фотон с энергией e1=1,53 МэВ в результате рассеяния на свободном электроне потерял 1/3 своей энергии.

107. Определить энергетическую освещенность Ее зеркальной поверхности, если давление р,производимое излучением, равно 40 мкПа. Излучение падает нормально к поверхности.

108. Поток энергии, излучаемой электрической лампой, Фе =600 Вт. На расстоянии r =1 м от лампы перпендикулярно падающим лучам расположено круглое плоское зеркальце диаметром d =2 см. Определить силу F светового давления на зеркальце. Лампу рассматривать как точечный изотропный излучатель.

109. Давление р света с длиной волны l=40 нм, падающего нормально на черную поверхность, равно 2 нПа. Определить число N фотонов, падающих за время t =10 с на площадь S =1 мм2 этой поверхности.

110. Параллельный пучок монохроматического света с длиной волны l=0,663 мкм падает на зачерненную поверхность и производит на нее давление р =0,3 мкПа. Определить концентрацию п фотонов в световом пучке.

111. Определить коэффициент отражения r поверхности, если при энергетической освещенности Ее =120 Вт/м2 давление р света на нее оказалось равным 0,5 мкПа.

112. Давление света, производимое на зеркальную поверхность, р =5 мПа. Определить концентрацию n oфотонов вблизи поверхности, если длина волны света, падающего на поверхность, l=0,5 мкм.

113. На расстоянии r =5 м от точечного монохроматического (l=0,5 мкм) изотропного источника расположена площадка (S =8 мм2) перпендикулярно падающим пучкам. Определить число N фотонов, ежесекундно падающих на площадку. Мощность излучения Р =100 Вт.

114. На зеркальную поверхность под углом a=60° к нормали падает пучок монохроматического света (l=590 нм). Плотность потока энергии светового потока Ф =1 кВт/м2. Определить давление р, производимое светом на зеркальную поверхность.

115. Свет падает нормально на зеркальную поверхность, находящуюся на расстоянии r =10 см от точечного изотропного излучателя. При какой мощности Р излучателя давление р на зеркальную поверхность будет равным 1 мПа?

116. Свет с длиной волны l=600 нм нормально падает на зеркальную поверхность и производит на нее давление р =4 мкПа. Определить число N фотонов, падающих за время t =10 с на площадь S =1 мм2 этой поверхности.

117. На зеркальную поверхность площадью S =6 см2падает нормально поток излучения Фе =0,8 Вт. Определить давление р и силу давления F света на эту поверхность.

118. Точечный источник монохроматического (l=1 нм) излучения находится в центре сферической зачерненной колбы радиусом R =10 см. Определить световое давление р, производимое на внутреннюю поверхность колбы, если мощность источника Р =1 кВт.

119. Невозбужденный атом водорода поглощает квант излучения с длиной волны l=102,6 нм. Вычислить, пользуясь теорией Бора, радиус r электронной орбиты возбужденного атома водорода.

120. Определить энергию e фотона, испускаемого при переходе электрона в атоме водорода с третьего энергетического уровня на основной уровень.

121. Вычислить по теории Бора радиус r 2 второй стационарной орбиты и скорость v 2 электрона на этой орбите для атома водорода.

122. Вычислить по теории Бора период Т вращения электрона в атоме водорода, находящегося в возбужденном состоянии, определяемом главным квантовым числом п =2.

123. Определить изменение энергии D E электрона в атоме водорода при излучении


Поделиться:


Последнее изменение этой страницы: 2016-12-10; просмотров: 241; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.205.123 (0.018 с.)