Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Легирование коррозионностойких сталейСодержание книги
Поиск на нашем сайте
Легирование коррозионностойких сталей и сплавов преследует достижение высокой коррозионной стойкости в рабочей среде (влажная атмосфера, морская вода, кислоты, растворы солей, щелочей, расплавы металлов и др.) и обеспечение заданного комплекса физико-механических характеристик. Устойчивость против коррозии повышается при введении в состав стали хрома, никеля, алюминия, кремния. Эти элементы образуют непрерывную прочную оксидную пленку и повышают электродный потенциал, то есть увеличивают электроположительность стали. Хром является основным легирующим элементом коррозионно-стойких сталей. Его содержание находится в пределах от 11 до 30 %. Хром стабилизирует модификации железа с ОЦК-решеткой и образует с этими модификациями непрерывные ряды твердых растворов. Область твердых растворов хрома в g-Fe сравнительно узкая и простирается до 13,3 ат. % Сr. Хром снижает температуру полиморфного a Û g - превращения железа от 910 до 830 °С при содержании ~ 7,5 ат. %. При дальнейшем увеличении содержания хрома эта температура резко возрастает. При содержании в сплавах ~ 50 ат. % Cr и температуре ~ 815°С происходит фазовая перекристаллизация a-твердого раствора с образованием так называемой σ – фазы. Реакция a®σ протекает крайне медленно, и необходимы продолжительные выдержки для ее завершения. Фазы σ имеет сложную тетрагональную структуру с 30 атомами в элементарной ячейке и обычно образуется в системах на основе переходных металлов и, как правило, обладает достаточно широкой областью гомогенности. В системе железо-хром эта область при 600 °С простирается от 43 ат. % Сr [7]. Одним из основных легирующих элементов высокопрочных коррозионностойких сталей является никель. Необходимость легирования никелем высокопрочных коррозионностойких сталей определяется, во-первых, тем, что он является аустенитообразующим элементом и позволяет при высокотемпературном нагреве под закалку получить аустенитную структуру, при охлаждении - претерпевать мартенситное превращение. Во-вторых, никель повышает пластичность мартенситной матрицы вследствие уменьшения степени закрепления дислокаций атомами внедрения и снижения сопротивления кристаллической решетки движению дислокаций [8,9]. В-третьих, никель, образуя интерметаллидные фазы с такими элементами, как Ti, Al и др., обеспечивает при старении необходимый уровень упрочнения. Таким образом, фазовый состав системы Fe-Cr-Ni определяется аустенитообразующим воздействием Ni и феррито- и сигмаобразующим воздействием хрома. Никель в хромистых сталях влияет на область стабильности σ-фазы, смещая ее в сторону более низких содержаний хрома и более высоких температур. При создании коррозионностойких сталей для получения необходимой структуры, свойств и обеспечения максимальной коррозионной стойкости используют в различных сочетаниях также другие легирующие элементы: ферритообразующие (Cr, Mo, Al, Si, Ti, Nb, W, V) и аустенитообразующие (Ni, C, Mn, N, Co, Cu) [6]. Марганец в коррозионностойких сталях является достаточно распространённым легирующим элементом. Легирование марганцем, во-первых, проводится на аустенитных высокоазотистых сталях с целью повышения концентрации усвояемого азота и, во-вторых, обеспечивает возможность снижения содержания дорогостоящего Ni (при сохранение требуемой структуры и свойств) на сталях аустенитного и мартенситного классов [10]. Кобальт,так же, как Ni и Mn, является элементом замещения, расширяющим g-область. Легирование высокопрочных коррозионностойких сталей кобальтом в ряде случаев является необходимым, хотя значительно ограничивает объем применения кобальтосодержащих сталей из-за их высокой стоимости. Как аустенитообразующий элемент, подавляющий d-феррит, кобальт в 1,5-2 раза менее эффективен, чем Ni, однако имеет перед ним ряд преимуществ. Одно из них в том, что, подавляя d-феррит, кобальт очень слабо снижает мартенситную точку, что позволяет стали с Co дополнительно легировать такими элементами, как Сr, Mo и др., повышая тем самым сопротивление коррозионным поражениям и сохраняя мартенситную структуру стали. Кроме того, кобальт, в отличие от Ni, не снижает, а несколько повышает температуру начала a®g - перехода при нагреве мартенситной матрицы, обеспечивая тем самым потенциальную возможность повышения температуры эксплуатации жаропрочных сталей. В безуглеродистых мартенситностареющих сталях кобальт уменьшает растворимость Mo в мартенсите и обеспечивает дисперсионное упрочнение Fe-Cr-Ni-Co-Mo сталей при сохранении достаточно высокого сопротивления хрупким разрушениям. Высокая вязкость мартенситной матрицы, легированной Co, связана, как и при легировании Ni, с ослаблением степени закрепления дислокации атомами внедрения и понижением сопротивления кристаллической решетки движению дислокаций. Особая, наиболее многогранная роль среди легирующих элементов принадлежит молибдену. Во-первых, молибден увеличивает пассивацию и химическую стойкость коррозионностойких сталей, в частности, в восстановительных средах и в присутствии Cl - ионов, когда пассивация за счет хрома недостаточна [11]. Во-вторых, молибден замедляет диффузию атомов внедрения и примесей, особенно по границам зерен, предотвращая или ослабляя тем самым выделение зернограничных фаз или сегрегаций на различных этапах термической обработки (закалка больших сечений, отпуск при повышенных температурах и т.д.) или при сварочных нагревах. Отсутствие зернограничных выделений и сегрегаций в высокопрочных коррозионно-стойких сталях, легированных Mo, резко повышает сопротивление хрупкому разрушению и коррозионным воздействиям. В-третьих, Mo замедляет разупрочнение мартенситной матрицы при температурах нагрева выше 500°С, что позволяет получить после отпусков при 500-550°С при высокой прочности повышенные значения вязкости и коррозионной стойкости. Кроме того, высокое содержание Mo (более 3 масс. %) в ряде композиций мартенситностареющих сталей (особенно при их дополнительном легировании Co) обеспечивает дисперсионное упрочнение при нагревах в интервале температур 350-550°С и высокий комплекс служебных характеристик. Легирование высокопрочных коррозионностойких сталей другими ферритообразующими элементами решает следующие задачи: 1) связывание атомов внедрения в стойкие карбиды, нитриды и карбонитриды, не растворяющиеся при температурах закалки (Nb, V, Ti в количестве до 0,2 масс. %), что обеспечивает измельчение зерна и повышение коррозионной стойкости; 2) дисперсионное упрочнение (Ti, Al, V в количестве 0,5-1,5 масс. %, W в количестве 3-5 масс. %); 3) упрочнение мартенситной матрицы и повышение сопротивления коррозионному растрескиванию (Si в количестве до 1,2 - 3 масс. %). Таким образом, можно сделать вывод о том, что высокопрочные коррозионностойкие стали для обеспечения высокого комплекса характеристик прочности, надежности и технологичности должны являться многокомпонентными сплавами, содержащими большой набор легирующих элементов, которые по-разному, как качественно, так и количественно, влияют на фазовый состав и структуру стали. В связи с этим оптимизация легирования рассматриваемых сталей различного назначения является достаточно сложной задачей. Первым этапом в систематизации различных, часто разрозненных и противоречивых экспериментальных данных по фазовому составу и структуре коррозионностойких сталей является их классификация и разработка диаграмм структурного состояния.
|
||||
Последнее изменение этой страницы: 2016-12-10; просмотров: 1583; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.203.255 (0.008 с.) |