Гидравлический расчет газопроводов 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Гидравлический расчет газопроводов



Основные понятия и расчетные уравнения

Процесс движения газа в трубопроводах можно считать стационарным и

изотерическим, а его температуру принимать равной температуре грунта, в котором

уложен газопровод [I]. В этом случае неизвестными параметрами движения газа будут

являться абсолютное давление Р, Па, плотность ρ, кг/м3 и скорость υ, м/с.

Для определения трех неизвестных Р, ρ и υ используют три основных уравнения:

Бернулли, неразрывности, состояния и формулы для определения потерь давления: Дарси-

Вейсбаха и Вейсбаха.

При расчетах газовых сетей условно рассматривают прямолинейные цилиндрические

трубопроводы. При этом величину потерь давления в местных сопротивлениях при

расчетах уличных распределительных газопроводов учитывают путем увеличения

расчетной длины на 5-10 %, а при расчете внутридомовых газопроводов используют метод эквивалентных длин.

Если рассматривать движение газа в цилиндрической трубе постоянного сечения и

при этом пренебречь массовыми силами (весом), то уравнение Бернулли обратится в

тождество. В этом случае из названных пяти уравнений останутся три: Дарси-Вейсбаха,

неразрывности и состояния. Эти уравнения записывают соответственно в виде

 


где λ - коэффициент гидравлического трения;

x - координата, м;

d - внутренний диаметр газопровода, м;

s - площадь поперечного сечения трубы, м2, s = π • d2 / 4;

Qo - объемный расход газа, приведенный к нормальным условиям, м3/ч;

Рo, ρ o и Тo - соответственно давление, плотность и температура газа при нормальных

условиях.

В общем случае для газопроводов среднего и высокого давления решением системы

(5.1) - (5.3) является выражение

 

 


где Рн и Pk, -абсолютные давления газа соответственно в начале и в конце участка

газопровода. Па;

lp - расчетная длина участка газопровода, м.

Для турбулентного режима движения, используя формулу Альтшуля для определения коэффициента гидравлического трения λ, выражению (6.4) придают вид [1, 4]

 

 


где Рн и Pk - абсолютное давление газа, соответственно в начале и конце участка

газопровода, МПа;

d - внутренний диаметр, газопровода, см;

Кэ - эквивалентная абсолютная шероховатость внутренней поверхности стенки трубы, см;

v - кинетический коэффициент вязкости газа при нормальных физических условиях, м2/c;

Q - расход газа при нормальных физических условиях, м3/ч.

Гидравлический расчет газопроводов низкого давления производят по следующей

формуле [4]

 

 


где Δ Р - падение давления на участке газопровода, Па.

lp=l+ Σξ⋅ l ξ=1э (5.7)

 

где l - действительная длина участка газопровода, м;

l ξ=1э - условная эквивалентная длина прямолинейного участка газопровода, потери

давления на котором равны потерям давления в местном сопротивлении ξ = 1, м [1, рис. 6.6; 2, рис. 21; 4, прил. 5*];

Σξ - сумма коэффициентов местных сопротивлений участка газопровода длиной l.

 

 


Падение давления в местных сопротивлениях при расчете наружных газопроводов

допускается учитывать путем увеличения расчетной длины участка газопровода на 5-10 %

[4, прил. 5*, п. 8].

Выполнение вычислений по формулам (5.5)—(5.8) представляет определенную сложность. Для облегчения расчетов на основании этих формул разработаны номограммы

и таблицы [1, 2, 3] (см. также прил. настоящих МУ).

Расчет по формуле (6.5) или соответствующей ей номограмме обычно сводится к

определению параметра (P2н – P2k) при известных длине участка газопровода l, расходе Q и диаметре трубы d. Если заданы значения Рн, Рк, l и Q, то определяют диаметр d.

Расчет по формуле (5.6) или соответствующей ей номограмме обычно сводят к

определению диаметра участка газопровода при известных расходе Q и удельной потере

давления Δ Р/l на этом участке.

Для надземных и внутренних газопроводов с учетом степени шума, создаваемого

движением газа, следует принимать скорость движения газа в трубах не более 7, 15 и 25

м/с соответственно для газопроводов низкого, среднего и высокого давления [4, прил. 5].

При гидравлических расчетах газопроводов низкого давления необходимо учитывать

дополнительное гидростатическое давление газа Δ Р2 , Па, вызванное разностью геометрических отметок в начале и конце участка газопровода.

Δ Рг = ± Zg ⋅ (ρв ρ г) (5.9)

где Z - разность геометрических отметок в начале и в конце участка газопровода, м;

ρв иρ г - соответственно плотность атмосферного воздуха и газа при нормальных

условиях, кг/м3;

g - ускорение свободного падения, м/с2.

Гидравлический расчет вертикальных стояков необходимо производить отдельно,

перепад давления в них принимают независимо от горизонтальных участков с целью учета

гидростатического давления по формуле (5.9).

Кольцевые сети газопроводов рассчитывают путем увязывания давления газа в

узловых точках колец при максимальном использовании расчетного перепада давления:

1) для кольцевых сетей высокого и среднего давления соблюдают равенство

перепадов давления в полукольцах, а точки встречи потоков газа (нулевые точки)

принимают из равенства расчетной длины каждого полукольца;

2) для кольцевых сетей низкого давления расчет считается законченным, если

перепады давления на полукольцах равны между собой или неувязка не превышает ± 10

%.

Перед пользованием номограммами или таблицами необходимо сопоставить

числовые значения плотностей. Если табличная плотность ρ Т не совпадает с расчетной

плотностью газа ρ г , то необходимо ввести правку, считая, что потери давления находятся в прямой зависимости от плотности.

 

Δ Р= Δ РТРг/Р Т (5.10)

 

При выполнении гидравлического расчета газопроводов по формулам (5.1)-(5.10)

диаметр участка трубопровода следует предварительно определять по [4, прил. 5*,

формула (13)].

 

 

 

 

 


Месторождение и состав природного газа (1-я часть варианта задания)


Исходные данные (1-я часть варианта)


БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Ионин А.А. Газоснабжение. - М.: Стройиздат, 1981. - 415 с.

2. Енин П.М., Семенов М.Б., Тахтамыш Н.И. Газоснабжение жилищно- коммунальных объектов / Справочник. - Киев: Будiвельник, 1981. - 136 с.

3. Стаскевич Н.Л., Северинец Г.Н., Вигдарчик Д.Я. Справочник по газоснабжению и использованию газа. — Л.: Недра, 1990.—762 с.

4. СНиП 2.04.08-87*. Газоснабжение. - М.: Стройиздат, 1995. - 66 с.

5. СНиП П-60-75*. Нормы проектирования. Планировка и застройка городов, поселков и сельских населенных пунктов. - М.: Стройиздат, 1981. - 79 с.

6. СНиП 2.01.01-82. Строительная климатология и геофизика. - М.: Стройиздат, 1983. - 136 с.

7. Гордюхин А.И. Газовые сети и установки. Устройство и проектирование. - М.: Стройиздат, 1978. - 383 с.

8. Скафтымов Н.А. Основы газоснабжения. - Л.: Недра, 1975. - 343 с.

9. Справочник проектировщика: внутренние санитарно-технические устройства. Вторая часть. Водопровод и канализация / Под ред. И.Г. Староверова и Ю.И. Шиллера. - М.: Стройиздат, 1990. - 247 с.

10. Гуськов Б.И., Кряжев Б.Г. Газификация промышленных предприятий. - М.: Стройиздат, 1982. - 368с.



Поделиться:


Последнее изменение этой страницы: 2016-12-10; просмотров: 644; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.131.110.169 (0.015 с.)