Открытия молекулярной генетики блестяще подтвердили факт эволюции 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Открытия молекулярной генетики блестяще подтвердили факт эволюции



Дарвин опубликовал «Происхождение видов» почти за 100 лет до расшифровки структуры ДНК. Новые знания, полученные с тех пор, могли бы однозначно опровергнуть эволюционное учение, если бы оно было ложно. Вместо этого анализ ДНК дает нам убедительнейшие доказательства теории эволюции. Сам факт наличия наследственной изменчивости необходим для эволюции, и если бы оказалось, что ДНК устойчива к изменениям, это означало бы конец теории. Но ДНК постоянно мутирует, порождая генетическое разнообразие, которое служит материалом для отбора. При этом обычно чем больше генетических различий между организмами, тем сильнее различается и их строение (хотя это не строгое правило, поскольку многие генетические мутации не проявляются в фенотипе). Например, отличия генома человека от генома шимпанзе включают 35 миллионов замен отдельных нуклеотидов, 5 миллионов удалений и вставок, слияние двух хромосом и девять хромосомных инверсий. Это очень небольшая степень различия (порядка 1-2%), учитывая, что размер генома человека и шимпанзе — свыше 3 миллиардов пар нуклеотидов. Все типы мутаций, которые привели к возникновению этих различий, наблюдаются и сегодня у разных организмов как в природе, так и в лаборатории; в противном случае версию об эволюционном происхождении от общего предка пришлось бы пересматривать, то есть это еще один пример фальсифицируемости теории эволюции.

Расшифровка молекулярной основы наследственности (ДНК) и генетического кода на самом деле была важнейшим «моментом истины» в истории эволюционного учения. «Вещество наследственности» вполне могло оказаться разным у разных видов (например, у человека — ДНК, а у шимпанзе — какой-нибудь другой биополимер). Генетический код тоже мог оказаться разным. В обоих случаях эволюционное превращение одного вида в другой, как и их происхождение от общего предка, стало бы принципиально невозможным, и эволюционная теория была бы опровергнута. Но и «вещество наследственности» (полинуклеотиды ДНК и РНК), и генетический код оказались одинаковыми у всех без исключения форм жизни — от вирусов и бактерий до человека включительно. Правда, в генетическом коде изредка встречаются вариации (см.: Генетический код допускает разночтения ), но они очень невелики и обычно затрагивают только некоторые второстепенные, «избыточные» кодоны. Эволюционная теория четко объясняет, почему генетический код практически не может изменяться в ходе эволюции. Чисто «технически» радикальное изменение генетического кода осуществить легко и просто: достаточно внести несколько десятков мутаций в гены транспортных РНК — молекул, играющих ключевую роль в «считывании» кода. В результате, например, «триптофановая» тРНК, распознающая кодон УГГ и присоединяющая к синтезируемой молекуле белка аминокислоту триптофан, начнет распознавать другой кодон или кодоны, например АГГ и АГА, которые сейчас кодируют аргинин. Но в результате этой простой мутации произойдет радикальное изменение всех белков, синтезируемых клетками организма: во всех белковых молекулах там, где должен быть аргинин, окажется триптофан. Такое изменение, затронувшее сразу все белки, не может не оказаться чрезвычайно вредным для организма. Соответственно, такая мутация немедленно будет отсеяна отбором. Антиэволюцинизм, напротив, не может предложить никаких внятных объяснений наблюдаемого единства генетического кода у всех организмов. Творец вполне мог бы снабдить разные виды сотворенных им существ разными генетическими кодами — ну хотя бы для того, чтобы не вводить биологов во искушение, предоставляя им еще один чрезвычайно весомый довод в пользу эволюции. К тому же это было бы и полезно для организмов, так как предотвратило бы межвидовую передачу болезнетворных вирусов. Именно таким путем человек «обзавелся» вирусами оспы (от рогатого скота), СПИДа (от обезьян), гриппа и др. Чисто «технически» разные варианты кода совершенно равнозначны и работать смогли бы одинаково хорошо.

Различия между геномами видов должны соответствовать не только экспериментально наблюдаемым типам мутаций, но и филогенетическому дереву, и палеонтологической летописи. Подобно тому, как анализ ДНК позволяет установить степень родства между двумя людьми, тот же самый анализ ДНК (сравнение отдельных генов или целых геномов) позволяет выяснить степень родства между видами, а зная количество накопленных различий, исследователи определяют время расхождения двух видов, то есть время, когда жил их последний общий предок. Например, согласно данным палеонтологии, общий предок человека и шимпанзе жил примерно 6 миллионов лет назад (такой возраст имеют, например, ископаемые находки оррорина и сахелантропа — форм, морфологически близких к общему предку человека и шимпанзе). Для того, чтобы получилось наблюдаемое число различий между геномами, на каждый миллиард нуклеотидов должно было приходиться в среднем 20 изменений за одно поколение. Сегодня у людей скорость мутаций составляет 10-50 изменений на каждый миллиард нуклеотидов за одно поколение (Giannelli, F., Anagnostopoulos, T., Green, P. M. Mutation rates in humans. II. Sporadic mutation-specific rates and rate of detrimental human mutations inferred from hemophilia B.), то есть данные палеонтологии согласуются с результатами анализа ДНК, в строгом соответствии с теорией эволюции (см. материал Genetic rates of change из архива TalkOrigins.org.)

Для того, чтобы построить филогенетическое дерево, достаточно рассмотреть несколько генов, присутствующих у всех организмов, которые мы хотим включить в это дерево (обычно чем больше генов, тем статистически достовернее получаются элементы дерева — порядок ветвления и длины ветвей).

Особый интерес представляют случаи, когда различия геномов оказываются нейтральными, то есть не влияют на организм. Например, было рассчитано, что цитохром c может быть составлен как минимум 2.3 * 1093 разными способами за счет того, что одинаковую по функции и биологически значимым свойствам молекулу белка можно получить с помощью разных последовательностей аминокислот. В свою очередь, каждая из этих последовательностей может быть закодирована 1046 различными последовательностями ДНК вследствие избыточности генетического кода (разные тройки нуклеотидов кодируют одну и ту же аминокислоту). Нет никаких априорных причин, кроме происхождения от общего предка, по которым два разных вида должны были бы иметь хотя бы отдаленно похожие последовательности ДНК для кодирования нормально работающего (функционального) цитохрома c. То же самое справедливо и для других белков. Тем не менее аминокислотные последовательности большинства белков у близкородственных видов (например, у шимпанзе и человека), как правило, очень похожи. Так, подавляющее большинство гомологичных белков человека и шимпанзе различаются лишь на 1-2 аминокислоты или не различаются вовсе. Различий в нуклеотидных последовательностях обычно больше за счет незначимых, или синонимичных (не влияющих на аминокислотную последовательность белка) нуклеотидных замен.

По соотношению несинонимичных и синонимичных нулеотидных замен (dN/dS) можно определить, насколько сильно действует на данный ген «очищающий» отбор, отбраковывающий мутации, которые меняют свойства белка. Как правило, чем консервативнее (постояннее) функция белка, тем ниже этот показатель. Повышение dN/dS свидетельствует о положительном отборе, т.е. о закреплении полезных мутаций. Например, повышенное значение dN/dS у человека по сравнению с другими млекопитающими зафиксировано в гене FOXP2, который связан со способностью к произнесению членораздельных звуков (см.: Будут ли расшифрованы генетические основы разума?; «Ген речи» FOXP2 оказался регулятором высокого уровня).

Малое число различий в аминокислотных последовательностях белков у близких видов связано не только с тем, что эти различия еще не успели накопиться, но и с тем, что многие одинаково удачные для выполнения данной функции аминокислотные последовательности (см. выше) отделены друг от друга так называемыми «ямами в ландшафте приспособленности». Это значит, что для того, чтобы перейти от одной такой последовательности к другой, функционально равнозначной, нужно приобрести сразу несколько мутаций, каждая из которых по отдельности может снижать функциональность белка. Многие из этих «ям» можно обойти, последовательно приобретая ряд нейтральных мутаций, но это долгий процесс, основанный на случайностях, а не на позитивном отборе, и поэтому он занимает много времени (см.: The Molecular Sequence Evidence из архива TalkOrigins.org.)

 

Пример сравнения нуклеотидных и аминокислотных последовательностей человека и шимпанзе

Сравнительный анализ нуклеотидных последовательностей позволяет судить о степени родства сравниваемых организмов. Это обстоятельство широко применяется на практике (в частности, для установления отцовства). Например, недавно на основе анализа ДНК из человеческих костей, обнаруженных под Екатеринбургом, удалось доказать, что это останки семьи последнего российского императора Николая II. При этом для сравнения был использован генетический материал ныне живущих родственников царской семьи (см.: Генетический анализ показал, что из детей Николая II не спасся никто).

Изучая семьи с известной генеалогией, генетики оценивают скорость накопления различий в ДНК. В частности, большую помощь оказало исследование ДНК населения Исландии — уникальной страны, где каждый житель знает всех своих предков вплоть то первых колонистов, прибывших в Исландию из Норвегии в IX веке (причем из останков нескольких первопоселенцев тоже удалось извлечь ДНК для анализа). Теми же методами можно реконструировать историю целых народов или, к примеру, находить среди современных азиатов потомков Чингисхана. Результаты генетического анализа при этом хорошо согласуются с сохранившимися историческими сведениями. В ходе многочисленных исследований такого рода, где можно было непосредственно сравнить генетические данные с историческими, генетики раз за разом убеждались в достоверности оценок родства на основе сравнения ДНК, а используемые методы развивались и совершенствовались.

Поэтому сегодня мы имеем возможность при помощи этих многократно проверенных и «откалиброванных» методов оценивать степень родства и таких организмов, по которым у нас нет прямых исторических данных. Результаты таких исследований позволяют устанавливать степень родства различных видов живых организмов с такой же степенью надежности, как и в случае установления отцовства или идентификации останков царской семьи. В частности, наше близкое родство с шимпанзе записано в наших геномах, можно сказать, аршинными буквами.

Рассмотрим пример сравнения нуклеотидных последовательностей ДНК и аминокислотных последовательностей белка у человека и шимпанзе.

 

Аминокислоты M T P T R K I N P L M K L I N H S F I DНуклеотиды ATGACCCCGACACGCAAAATTAACCCACTAATAAAATTAATTAATCACTCATTTATCGAC 60 шимпанзе

|| |

||

||

||

ATGACCCCAATACGCAAAACTAACCCCCTAATAAAATTAATTAACCACTCATTCATCGAC 60 человек M T P M R K T N P L M K L I N H S F I D L P T P S N I S A W W N F G S L L G A C CTCCCCACCCCATCCAACATTTCCGCATGATGGAACTTCGGCTCACTTCTCGGCGCCTGC 120

||

||

|| ||

CTCCCCACCCCATCCAACATCTCCGCATGATGAAACTTCGGCTCACTCCTTGGCGCCTGC 120 L P T P S N I S A W W N F G S L L G A C L I L Q I T T G L F L A M H Y S P D A S CTAATCCTTCAAATTACCACAGGATTATTCCTAGCTATACACTACTCACCAGACGCCTCA 180 ||

||

||

| ||

CTGATCCTCCAAATCACCACAGGACTATTCCTAGCCATGCACTACTCACCAGACGCCTCA 180 L I L Q I T T G L F L A M H Y S P D A S   Здесь показан начальный фрагмент (180 нуклеотидов) митохондриального гена цитохрома b шимпанзе и человека. Митохондриальные гены накапливают мутации примерно в 5-10 раз быстрее, чем ядерные. Поэтому митохондриальные гены человека и шимпанзе различаются на 9%, а ядерные — где-то на 1-2%. Здесь показан митохондриальный ген, потому что если бы мы взяли ядерный ген, сходство было бы очень большим, и нам пришлось бы приводить гораздо более длинную последовательность, чтобы наглядно продемонстрировать характер различий. А вообще ген можно взять практически любой — картина будет качественно одна и та же. Из 60 аминокислот, кодируемых этими 180 нуклеотидами, у шимпанзе и человека различаются только две (4-я и 7-я, выделены красным). Из 60 кодонов (триплетов, троек нуклеотидов) различаются 16, однако только 2 из 16 различий являются «значимыми» (несинонимичными), а остальные — синонимичные, не влияющие на структуру белка. Синонимичные нуклеотидные отличия человека от шимпанзе веделены зеленым цветом и подчеркиванием, несинонимичные — красным цветом и подчеркиванием. Генетическое родство человека и шимпанзе доказывается даже не столько сходством последовательностей, сколько характером различий между ними. Легко заметить, что характер этих различий полностью соответствует предсказаниям эволюционной теории. Больше всего должно быть синонимичных нуклеотидных замен, потому что такие замены не влияют на свойства белка и, следовательно, невидимы для отбора, не отбраковываются им. Именно это мы и наблюдаем. То, что в большинстве случаев (44 из 58) для кодирования одной и той же аминокислоты в геноме человека и шимпанзе используется один и тот же триплет — это еще одно доказательство генетического родства. С точки зрения функциональности нет абсолютно никакой разницы, каким из нескольких триплетов, соответствующих данной аминокислоте, закодировать ее в каждом конкретном случае. Например, аминокислота T (треонин) кодируется любым из четырех кодонов: ACA, ACT, ACG, ACC. Эта аминокислота встречается в одинаковых позициях в рассматриваемом фрагменте белка человека и шимпанзе четырежды. При этом в каждом из четырех случаев она закодирована у обоих видов одним и тем же кодоном (в первых трех случаях это кодон ACC, в четвертом — ACA). Вероятность случайности такого совпадения 0.254 = 0.0039. Если собрать все такие случаи по геномам человека и шимпанзе, вероятность случайности получится невообразимо ничтожной, практически неотличимой от нуля. Таким образом, дело здесь не просто в сходстве ДНК, дело в характере сходства, которое выходит далеко за пределы любой функциональной оправданности. Особенно важно сходство по бессмысленным частям генетического «текста» (сюда относится и использование одинаковых синонимичных кодонов), а также по характерным ошибкам в нем (см. ниже об эндогенных ретровирусах и псевдогенах). Для любого специалиста по сравнительной геномике кровное родство человека и шимпанзе абсолютно очевидно и не вызывает даже тени сомнения. Опытный учитель сразу поймет, что один ученик бездумно списал у другого, если заметит в их сочинениях не только одинаковые мысли (это еще можно объяснить одинаковыми намерениями авторов), но и одинаковые фразы, используемые для их выражения, а особенно — одинаковые ошибки и одинаковые сорные словечки в одних и тех же местах текста. Все эти бесспорные признаки единства происхождения (а не независимого сотворения) в величайшем изобилии присутствуют в геномах близкородственных видов, каковыми являются человек и шимпанзе. Сравним теперь аминокислотные последовательности того же самого фрагмента цитохрома b у шимпанзе, человека и макаки резуса: Pan MTPTRKINPLMKLINHSFIDLPTPSNISAWWNFGSLLGACLILQITTGLFLAMHYSPDASHomo MTPMRKTNPLMKLINHSFIDLPTPSNISAWWNFGSLLGACLILQITTGLFLAMHYSPDASMacaca MTPMRKSNPILKMINRSFIDLPAPPNLSMWWNFGSLLAACLILQIITGLLLAMHYSPDTS Как видим, у макаки аминокислотная последовательность этого белка сильнее отличается от человеческой и шимпанзиной, чем последовательности первых двух видов друг от друга (14 аминокислотных различий между макакой и шимпанзе, 13 — между макакой и человеком, 2 — между шимпанзе и человеком). Это полностью соответствует биологической систематике и эволюционному дереву (шимпанзе — гораздо более близкий родственник человека, чем макака). То, что по одной аминокислоте (4-й) макака больше похожа на человека, чем на шимпанзе, означает, что, скорее всего, у общего предка макаки и человекообразных в этой позиции стояла аминокислота M, которая сохранилась у макаки и человека. Однако в линии шимпанзе, уже после ее отделения от человеческой линии, произошла замена M на T. Интересно взглянуть на ситуацию с точки зрения шимпанзе. Для этого вида человек — более близкий родственник, чем любая другая обезьна. Даже горилла, внешне не так уж сильно отличающаяся от шимпанзе (по крайней мере на наш человеческий взгляд), приходится шимпанзе более дальней родственницей, чем человек. В свою очередь, для гориллы люди и шимпанзе — самые близкие родственники, значительно более близкие, чем любые другие обезьяны. Таким образом, результаты сравнения генов и белков подтверждают представления о родственных связях между видами (эволюционном дереве), которые сложились задолго до «прочтения» геномов. Аналогичные результаты получаются при сравнении практически любых генов в любых группах организмов. Каждый читатель может убедиться в этом самостоятельно, поскольку все прочтенные гены и программное обеспечение для их анализа находятся в свободном доступе.  



Поделиться:


Последнее изменение этой страницы: 2016-09-20; просмотров: 204; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.144.197 (0.02 с.)