Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Внутрисердечные механизмы регуляции.↑ ⇐ ПредыдущаяСтр 4 из 4 Содержание книги
Поиск на нашем сайте
Внутриклеточные механизмы регуляции. Исследования в электронном микроскопе позволили установить, что миокард не является синцитием, а состоит из отдельных. клеток — миоцитов, соединяющихся между собой вставочными дисками. В каждой клетке действуют механизмы регуляции синтеза белков, обеспечивающих сохранение ее структуры и функций. Скорость синтеза каждого из белков регулируется собственным ауторегуляторным механизмом, поддерживающим уровень воспроизводства данного белка в соответствии с интенсивностью его расходования. При увеличении нагрузки на сердце (например, при регулярной мышечной деятельности) возникает усиление синтеза сократительных белков миокарда и структур, обеспечивающих их деятельность. Появляется так называемая рабочая (физиологическая) гипертрофия миокарда, наблюдающаяся, например, у спортсменов.. Внутриклеточные механизмы регуляции обеспечивают и изменение интенсивности деятельности миокарда в соответствии с количеством притекающей к сердцу крови. Этот механизм получил название «закон сердца» (закон Франка — Старлннга). Сила сокращения миокарда пропорциональна степени исходной длины его мышечных волокон, т. е. степени растяжения миокарда во время диастолы. Более сильное растяжение миокарда в момент диастолы соответствует усиленному притоку крови к сердцу. При этом внутри каждой миофибриллы актиновые нити в большей степени выдвигаются из промежутков между миозиновыми нитями, а, значит, растет количество резервных мостиков, т. е. тех активных точек, которые соединяют актиновые и миозиновые нити в момент сокращения. Следовательно, чем больше растянута каждая клетка миокарда во время диастолы, тем больше она сможет укоротиться во время систолы. Поэтому сердце перекачивает в артериальную систему то количество крови, которое притекает к нему из вен. Регуляция межклеточных взаимодействий. В последние годы выявлено, что вставочные диски, соединяющие клетки миокарда, имеют различную структуру. Одни их участки выполняют чисто механическую функцию, соединяя миофибриллы клеток. Другие участки обеспечивают транспорт через мембрану миоцита необходимых ему веществ. Третьи участки вставочных дисков, нексусы или тесные контакты, проводят возбуждение с клетки на клетку, т. е. объединяют клетки миокарда в функциональный синцитий. Нарушение межклеточных взаимодействий приводит к асинхронному возбуждению клеток миокарда и появлению сердечных аритмий.
К межклеточным взаимодействиям следует отнести и взаимоотношения миоцитов с соединительнотканными клетками миокарда. Последние представляют собой не просто механическую опорную структуру. Они поставляют для сократительных клеток миокарда ряд сложных высокомолекулярных продуктов, необходимых для поддержания структуры и функции сократительных клеток. Подобный тип межклеточных взаимодействий получил название креаторных связей. Данные последних лет свидетельствуют о том, что процессы межклеточного взаимодействия в миокарде могут регулироваться нервной системой. Внутрисердечные периферические рефлексы. Более высокий уровень внутриорганной регуляции деятельности сердца представлен внутрисердечными нервными механизмами. В сердце обнаружены так называемые периферические рефлексы, дуга которых замыкается не в ЦНС, а в интрамуральных ганглиях миокарда. После пересадки сердца теплокровных и дегенерации всех нервных элементов экстракардиального происхождения в сердце сохраняется и функционирует внутриорганная нервная система, организованная по рефлекторному принципу. Эта система включает афферентные нейроны, ден-дриты которых образуют рецепторы растяжения на волокнах миокарда и коронарных сосудах, вставочные нейроны и эфферентные нейроны. Аксоны последних иннераируют миокард и гладкие мышцы коронарных сосудов. Указанные нейроны соединены между собой синаптическими связями, образуя внутрисердечные рефлекторные дуги. Увеличение растяжения миокарда правого предсердия (в естественных условиях оно возникает при увеличении притока крови к сердцу) приводит к усилению сокращений миокарда левого желудочка. Таким образом, усиливаются сокращения не только того отдела сердца, миокард которого непосредственно растягивается притекающей кровью, но и других отделов, чтобы «освободить место» притекающей крови и ускорить выброс ее в артериальную систему. Доказано, что эти реакции осуществляются посредством внутрисердечных периферических рефлексов.
Подобные реакции наблюдаются лишь на фоне низкого исходного кровенаполнения сердца и незначительной величины давления крови в устье аорты и коронарных сосудах. Если камеры сердца переполнены кровью и давление в устье аорты и коронарных сосудах высокое, то растяжение венозных приемников в сердце угнетает сократительную активность миокарда, в аорту выбрасывается меньшее количество крови, а приток крови из вен затрудняется. Подобные реакции играют важную роль в регуляции кровообращения, обеспечивая стабильность кровенаполнения артериальной системы. Как известно, стенки артерий ригидны. Артериальная система в отличие от вен не способна сколько-нибудь значительно изменять свою вместимость. Расчеты показывают, что при внезапном нагнетании сердцем в артериальную систему не 50—70 мл, как обычно, а 150 мл крови систолическое давление в ней могло бы подняться до 400 мм рт. ст., что было бы опасно для жизни. Известно, что существуют барорецепторы дуги аорты и сонных артерий, контролирующие уровень артериального давления посредством отрицательной обратной связи. При повышении давления в артериях барорецепторы формируют сигналы, достигающие сосудодвигательного центра и вызывающие понижение сосудистого тонуса. Эти регуляторные механизмы осуществляют регуляцию «по рассогласованию», т. е. они включаются лишь тогда, когда уровень артериального давления уже. изменился. По своей природе они могут вернуть к норме артериальное давление, но не способны предотвратить опасное для жизни резкое повышение давления в артериях. В соответствии с «законом сердца» сердечный выброс возрастает тем больше, чем большее количество крови во время диастолы притекает к сердцу из вен. Кроме того, известен так называемый эффект Анрепа, в соответствии с которым сила сокращения миокарда желудочков возрастает пропорционально повышению сопротивления (давления крови) в артериальной системе. Это т. н. гомеометрический механизм регуляции, который, в отличие от гетерометри-ческого механизма, меняет силу сокращений миокарда на фоне неизменной исходной (диастолической) длины волокон миокарда (т. е, при сохранении постоянного притока венозной крови к сердцу). Оба указанные механизма — гетерометриче-ский и гомеометрический могут привести лишь к резкому увеличению энергии сердечного сокращения при внезапном повышении притока крови из вен или при повышении артериального давления. При этом артериальная система осталась бы не защищена от губительных для нее внезапных мощных ударов крови. В действительности же таких ударов не возникает благодаря защитной роли, осуществляемой рефлексами внутрисердечной нервной системы. Переполнение камер сердца притекающей кровью (равно как и значительное повышение давления крови в устье аорты, коронарных сосудах) вызывает снижение силы сокращений миокарда посредством внутрисердечных периферических рефлексов. Сердце при этом выбрасывает в артерии в момент систолы меньшее, чем в норме, количество содержащейся в желудочках крови. Задержка даже небольшого дополнительного объема крови в камерах сердца повышает диастолическое давление в его полостях, что вызывает снижение притока венозной крови к сердцу. Излишний объем крови, который при внезапном выбросе его в артерии мог бы вызвать пагубные последствия, задерживается в венозной системе.
Опасность для организма представляло бы и уменьшение сердечного выброса, что могло бы вызвать критическое падение артериального давления. Такую опасность также предупреждают регуляторные реакции внутрисердечной системы. Недостаточное наполнение кровью камер сердца и коронарного русла вызывает усиление сокращений миокарда посредством внутрисердечных периферических рефлексов. При этом желудочки в момент систолы выбрасывают в аорту большее, чем в норме, количество содержащейся в них крови. Это и предотвращает опасное недонаполнение кровью артериальной системы. К моменту расслабления желудочков они содержат меньшее, чем в норме, количество крови, что способствует.Д^илению притока венозной крови к сердцу. В естественных условиях внутрисердечная нервная система не является автономной. Она — лишь низшее звено сложной иерархии нервных механизмов, регулирующих деятельность сердца. Следующим, более высоким звеном этой иерархии являются блуждающие и симпатические нервы, осуществляющие процессы экстракардиальной нервной регуляции сердца.
|
||||||||||||||||||||||
Последнее изменение этой страницы: 2016-09-20; просмотров: 373; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.135.178 (0.01 с.) |