Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Четвертое звено дыхательного процесса

Поиск

В основе газообмена между кровью и тканями лежат те же принципы, что и в газообмене между легкими и кровью:

1) величина парциального давления, градиент парциального давления кислорода. Парциальное давление О2 в артериальной крови составляет около 100 мм рт.ст., а в тканях около 20-40 мм рт.ст., т.е. градиент составляет около 60 мм рт.ст. Эта величина зависит как от степени насыщения крови кислородом, так и от степени утилизации О2,а величина последней составляет примерно 30-40%. Коэффициентом утилизации кислорода называется количество О2, отданного тканям при прохождении крови через тканевые капилляры. Величину парциального давления определяют полярографическим методом — электроды из платины вводят в ткань и по показаниям прибора оценивают парциальное давление. Оно в тканях зависит от: а) функционального состояния тканей: мышечная ткань, миокард при своей деятельности расходуют больше О2, при физической работе в скелетных мышцах парциальное давление кислорода существенно снижается за счет потребления его мышцей. Однако мышцы и миокард потребность в кислороде удовлетворяют за счет миоглобина, так как доставка кислорода может быть недостаточной, то есть они используют анаэробный обмен веществ. В миокарде в момент систолы, когда потребность в кислороде увеличивается, прекращается кровоток по коронарным артериям. Они как бы сжимаются. Поступление кислорода резко сокращается. В момент диастолы наоборот, объем кровотока усиливается, миокард получает больше кислорода. Газообмен в момент систолы происходит в миокарде тоже за счет миоглобина.

Разные участки почек имеют определенные особенности потребления О2: корковое вещество в 20 раз потребляет кислорода больше, чем мозговое вещество. Потребление кислорода почками связано с процессом мочеобразования: Особенно много кислорода тратится на процессы обратного всасывания натрия в канальцах почек. Для обеспечения нормальной работы органов, микроциркуляторное русло способно по принципу ауторегуляции изменять свое функциональное состояние. При усиленной работе открываются все капилляры, а в покое работают не все. Благодаря этому происходит ауторегуляция в зависимости от потребности органа в кислороде и питательных веществах, т.е. работающий орган может менять свое состояние без вмешательства со стороны ЦНС.

2) Диффузионное расстояние может меняться в результате изменения состояния стенки капилляра, застоя крови в капиллярной сети, в результате закрытия некоторых капилляров.

3) диффузионный коэффициент — неодинаков для разных газов (у СО2 больше, чем у О2).

4) объем протекающей крови: а) объемная скорость кровотока и б) диффузионная площадь — это не только площадь капилляров, но и площадь отдачи кислорода и расщепления оксигемоглобина, в) количество эритроцитов и гемоглобина. Потребление кислорода зависит от функционального состояния тканей, утилизация (потребление) его повышается при физической нагрузке. В покое она для мышц 40-60%, а при мышечной нагрузке увеличивается до 80%. Степень возрастания коэффициента утилизации зависит от степени интенсивности работы. Если будет наблюдаться повышенный приток кислорода, облегченные условия диффузии газов из крови к тканям, повышение утилизации кислорода, то функции органов усиливаются. Это может быть при функциональном перенапряжении, но чаще это бывает в результате кратковременной, но интенсивной работы, или в результате продолжительной нагрузки и тогда возникает кислородный долг — расход кислорода на окислительные процессы больше, а депонирование миоглобина уменьшается. Поэтому после напряженной физической работы продолжается усиленное потребление кислорода организмом и тканями. Это обусловлено тем, что депонированного кислорода — миоглобина мало и его надо пополнять.

Факторы, нарушающие обмен газов между кровью и тканями:

1) недостаточное снабжение кислородом: а) артериальная гипоксия, б) тканевая гипоксия. При артериальной гипоксии содержится мало НbО2 в артериальной крови. Это бывает в результате низкого парциального давления кислорода в атмосфере или в алвеолярном воздухе, в результате нарушения вентиляции легких, например, при пневмонии.

2) в результате анемии изменяется кислородная емкость крови (в норме артериальная кровь содержит 20-21 об.% О2).

3) гемоциркуляторные механизмы снижения кровоснабжения, имеющие ишемический характер. Это обусловлено: а) местным изменением кровоснабжения, которое может быть обусловлено уменьшением просвета сосудов (опухоль) или повреждением их. б) системными изменениями кровообращения (падение АД в результате снижения тонуса сосудов, объема циркулирующей крови, недостаточности работы сердца).

ПЯТОЕ ЗВЕНО ДЫХАТЕЛЬНОГО ПРОЦЕССА или тканевое дыхание, т.е. обмен дыхательных газов, происходящий в массе клеток при биологическом окислении питательных веществ. Это звено дыхательного процесса рассматривается в курсе биохимии.

ЖИЗНЕННАЯ ЕМКОСТЬ ЛЕГКИХ.

ЖЕЛ у каждого человека в процессе его развития претерпевает существенные изменения: сначала она увеличивается, а потом (у пожилых людей) уменьшается. Для количественной оценки вентиляции легких необходимо знать составные части ЖЕЛ. Легочные объемы подразделяют на статические и динамические. Статические легочные объемы измеряют при завершенных дыхательных движениях без лимитирования их скорости. Динамические легочные объемы измеряют при проведении дыхательных движений с ограничением времени на их выполнение. ЖЕЛ ― это объем воздуха, который можно максимально выдохнуть после максимального вдоха. У людей среднего возраста в среднем 3,5-5,0 л.

Общая емкость легких (ОЕЛ) состоит из ЖЕЛ и остаточного воздуха (около 1,0-1,5 л). ЖЕЛ состоит из: 1) дыхательный воздух (объем)»500 мл (от 400 до 900 мл могут быть индивидуальные колебания, которые зависят от возраста, пола, физической натренированности). Из 500 мл до легких доходит 350-360 мл, а 140-150 мл остается в мертвом пространстве — в дыхательных путях; 2) резервный объем вдоха — тот объем воздуха, который можно вдохнуть при максимальном вдохе после обычного вдоха. В среднем 1,5-1,8 л; 3) резервный объем выдоха — тот объем воздуха, который можно выдохнуть при максимальном выдохе после спокойного выдоха. Равен 1,0-1,4 л.

Остаточный объем ― равен 1-1,5 л, он не входит в ЖЕЛ — это объем воздуха, который остается в легких после максимального выдоха. Он может выходить при двухстороннем пневмотораксе, при вскрытии грудной клетки. Для определения остаточного объема используются инертные газы, учитывается концентрация вдыхаемого инертного газа и конечного инертного газа в выдыхаеммом воздухе и расчетным методом определяют остаточный объем.

Функциональная остаточная емкость (ФОЕ) — это сумма остаточного воздуха и резервного объема выдоха. В среднем 2,8-3,0 л. Из этой части воздуха происходит вентиляция разовая — за один вдох и выдох поступает 350 мл воздуха. Коэффициент вентиляции составляет 1/6-1/7 часть этого объема.

Факторы, влияющие на ЖЕЛ:

1) возраст: у детей ЖЕЛ меньше, чем у взрослых. У пожилых меньше, чем у людей среднего возраста. Должная ЖЕЛ (ДЖЕЛ) определяется по формуле Болдуина (будете определять на практических занятиях). Если между ДЖЕЛ и ЖЕЛ имеется разница до 15%, то это нормально;

2) степень физической тренированности (у спортсменов ЖЕЛ больше). Это обусловлено большой силой сокращения дыхательных мышц и эластическими свойствами легких;

3) пол (у женщин» на 25% меньше, чем у мужчин);

4) при заболеваниях дыхательной системы (при эмфиземе легких, при воспалении легких ЖЕЛ уменьшается). Измерение легочных объемов производится методами спирометрии и спирографии. Определение этих величин имеет клиническое (у больных) и контрольное (у здоровых людей, спортсменов) значение.

Анатомическое вредное пространство (150-160 мл) — включает в себя все дыхательные пути. Здесь обмена газов между кровью и дыхательными путями не происходит. При увеличении вредного пространства (например, в противогазе) до легких при обычной глубине вдоха воздуха доходит меньше, поэтому дыхание должно быть глубокое, а также под маской противогаза накапливается влага, что приводит к снижению парциального давления кислорода. Кроме понятия анатомическое вредное (мертвое) пространство имеется понятие функциональное (физиологическое) вредное пространство. Сюда, кроме воздухоносных путей, входят нефункционирующие альвеолы. Этот показатель имеет переменное значение. Он изменяется из-за того, что через капилляры некоторых альвеол прекращается кровоток, они не участвуют в газообмене и функциональное вредное пространство увеличивается.

ВЕНТИЛЯЦИЯ ЛЕГКИХ.

Обмену О2 и СО2 между атмосферным воздухом и внутренней средой организма способствует постоянное обновление состава воздуха, находящегося в альвеолах, т.е. происходит альвеолярная вентиляция. Степень легочной вентиляции зависит от глубины и частоты дыхания. При увеличении объема дыхательного воздуха (а во время интенсивной мышечной работы он может увеличиться до 2500 мл, т.е. в 5 раз) резко возрастает вентиляции легких и альвеол. Для количественной характеристики степени вентиляции легких существуют понятия: минутный объем дыхания (МОД), минутная вентиляция легких и разовая вентиляция легких. Минутный объем дыхания ― это общее количество воздуха, которое проходит через легкие за 1 мин. В покое этот объем составляет 6-8 л. Простым методом определения МОД является умножение частоты дыхания на величину дыхательного объема (например, 16·500). При интенсивной мышечной работе минутный объем дыхания может достигать до 100-120 л

Под разовой вентиляцией легких понимают тот объем воздуха, который обновляется при каждом вдохе и выдохе, т.е. составляет около 350-360 мл (дыхательный объем минус объем вредного пространства). В результате вентиляции легких уровень парциального давления газов в альвеолах находится на достаточно постоянном уровне. Состав атмосферного воздуха по процентному содержанию газов существенно отличается от альвеолярного и выдыхаемого воздуха. Атмосферный воздух содержит: О2 ― 20,85%, СО2 ― 0,03-0,04%, азота ― 78,62%. В альвеолярном воздухе содержится О2 ― 13,5%, СО2 ― 5,3% и азота- 74,9%. В выдыхаемом воздухе содержание этих газов составляет соответственно 15,5%, 3,7% и 74,6%. Приведенное выше процентное соотношение газов достаточно стабильное, но парциальное давление их может меняться в зависимости от общего барометрического давления. Парциальное давление газов снижается в условиях высокогорья. Из приведенных выше данных также видно, что содержание кислорода в выдыхаемом воздухе оказывается больше, чем в альвеолярном воздухе, а углекислого газа меньше. Это объясняется тем, что выдыхаемый воздух, проходя через дыхательные пути, перемешивается воздухом, содержащимся в них, а состав воздуха в верхних дыхательных путях близок к составу атмосферного воздуха. Важным показателем эффективности дыхания является альвеолярная вентиляция, именно от степени альвеолярной вентиляции зависит обеспечение организма кислородом и выведение углекислого газа. Минутный объем дыхания не всегда отражает истинный обмен газов между альвеолами и кровью. Он может быть в достаточной степени увеличен и тогда, когда дыхание будет частое и поверхностное, но в этом случае альвеолярная вентиляция будет выражена слабее, чем при глубоком дыхании. Характер вентиляции легких может меняться в результате влияния разных причин: мышечная работа, психо–эмоциональное возбуждение, низкое парциальное давление кислорода или высокое содержание СО2, различные патологические процессы в дыхательной и сердечно–сосудистой системах и т.д. В последнее время была сделана попытка классификации типов вентиляции.

Были выделены следующие типы вентиляции:

1) нормовентиляция, когда парциальное давление СО2 в альвеолах около 40 мм рт.ст.;

2) гипервентиляция, когда парциальное давление СО2 в альвеолах ниже 40 мм рт.ст.;

3) гиповентиляция, когда парц. давл. СО2 в альвеолах выше 40 мм рт.ст.;

4) повышенная вентиляция ― любое увеличение альвеолярной вентиляции по сравнению с уровнем покоя независимо от парциального давления газов в альвеолах (например, при мышечной работе);

5) эупноэ ― нормальная вентиляция в покое с ощущением комфорта;

6) гиперпноэ ― увеличение глубины дыхания не зависимо от того изменена частота дыханий или нет;

7) тахипноэ ― увеличение частоты дыхания;

8) брадипноэ ― снижение частоты дыхания;

9) апноэ ― остановка дыхания (вследствие уменьшение парциального давления СО2 в артериальной крови;

10) диспноэ (одышка) ― неприятное субъективное ощущение недостаточности дыхания или затрудненности его;

11) ортопноэ ― выраженная одышка в связи с застоем (чаще всего) крови в легочных капиллярах в результате недостаточности левого желудочка. Таким больным тяжело лежать;

12) асфиксия ― остановка или угнетение дыхания (чаще всего при параличе дыхательного центра).

Искусственное дыхание. Остановка дыхания независимо от вызвавшей ее причины смертельно опасна. С момента остановки дыхания и кровообращения человек находится в состоянии клинической смерти. Как правило, уже через 5-10 мин недостаток О2 и накопление СО2 приводят к необратимым повреждениям клеток жизненно важных органов, в результате чего наступает биологическая смерть. Если за этот короткий срок провести реанимационные мероприятия, то человека можно спасти.

К нарушению дыхания могут привести самые разные причины, в том числе закупорка дыхательных путей, повреждение грудной клетки, резкое нарушение газообмена и угнетение дыхательных центров вследствие повреждения головного мозга или отравления. В течение некоторого времени после внезапной остановки дыхания кровообращение еще сохраняется: пульс на сонной артерии определяется в течение 3-5 мин после последнего вдоха. В случае же внезапной остановки сердца дыхательные движения прекращаются уже через 30-60 с.

Обеспечение проходимости дыхательных путей. У человека в бессознательном состоянии утрачиваются защитные рефлексы, благодаря которым в норме воздухоносные пути свободны. В этих условиях рвота или носовое либо горловое кровотечение может привести к закупорке дыхательных путей (трахеи и бронхов). Поэтому для восстановления дыхания в первую очередь необходимо быстро очистить рот и глотку. Однако даже без этих осложнений воздухоносные пути человека, лежащего в бессознательном состоянии на спине, могут быть перекрыты языком в результате западения нижней челюсти. Чтобы предупредить перекрывание воздухоносных путей языком, запрокидывают голову больного и смещают его нижнюю челюсть кпереди.

Искусственное дыхание методом вдувания. Для проведения искусственного дыхания без помощи специальных устройств наиболее эффективен способ, при котором реаниматор вдувает воздух в нос или рот пострадавшего, т.е. непосредственно в его дыхательные пути.

При дыхании «рот в нос» реаниматор кладет ладонь на лоб пострадавшего в области границы роста волос и запрокидывает его голову. Второй рукой реаниматор выдвигает нижнюю челюсть пострадавшего и закрывает ему рот, надавливая большим пальцем на губы. Сделав глубокий вдох, реаниматор плотно приникает ртом к носу пострадавшего и производит инсуфляцию (вдувание воздуха в дыхательные пути). При этом грудная клетка пострадавшего должна приподняться. Затем реаниматор освобождает нос пострадавшего, и происходит пассивный выдох под действием силы тяжести грудной клетки и эластической тяги легких. При этом следует следить за тем, чтобы грудная клетка возвращалась в исходное положение.

При дыхании «рот в рот» реаниматор и пострадавший занимают то же положение: одна ладонь реаниматора лежит на лбу больного, другая ― под его нижней челюстью, Реаниматор приникает ртом ко рту пострадавшего, закрывая при этом своей щекой его нос. Можно также сдавить ноздри пострадавшего при помощи большого и указательного пальцев руки, лежащей на лбу. При этом способе искусственного дыхания также следует следить за движениями грудной клетки при инсуфляции и выдохе.

Какой бы способ искусственного дыхания ни использовался, прежде всего, необходимо произвести в быстром темпе 5-10 инсуфляции, с тем, чтобы как можно быстрее ликвидировать недостаток О2 и избыток СО2 в тканях. После этого инсуфляции следует производить с интервалом 5 с. При соблюдении этих правил насыщение артериальной крови пострадавшего кислородом почти постоянно превышает 90%.

Искусственное дыхание при помощи специальных устройств. Существует простое приспособление, при помощи которого (если оно находится под рукой) можно производить искусственное дыхание. Оно состоит из маски, герметично накладываемой на лицо больного, клапана и мешка, который вручную сжимается, а затей расправляется. При наличии баллона с кислородом его можно присоединить к этому устройству, для того чтобы повысить содержание О2 во вдыхаемом воздухе.

При широко используемом в настоящее время ингаляционвом наркозе воздух из дыхательного аппарата поступает в легкие через эндотрахеальную трубку. В этом случае можно подавать воздух в легкие при повышенном давлении, и тогда вдох будет происходить в результате раздувания легких, а выдох ― пассивно. Можно также управлять дыханием, создавая колебания давления, чтобы оно было попеременно выше и ниже атмосферного (при этом среднее давление должно быть равно атмосферному). Поскольку отрицательное давление в грудной полости способствует возврату венозной крови к сердцу, предпочтительнее применять искусственное дыхание в режиме изменяющегося давления.

Применение дыхательных насосов или ручных дыхательных мешков необходимо при операциях с использованием миорелаксантов, устраняющих рефлекторное напряжение мышц. Эти вещества «выключают» и дыхательные мышцы, поэтому вентиляция легких возможна лишь за счет искусственного дыхания.

В случае если у больного имеется хроническое нарушение внешнего дыхания (например, при детском спинальном параличе), вентиляцию легких можно поддерживать с помощью так называемого боксового респиратора («железное легкое»). При этом туловище больного, находящееся в горизонтальном положении, помещают в камеру, оставляя свободной лишь голову. Для инициации вдоха давление в камере понижают, чтобы внутригрудное давление стало выше, чем давление во внешней среде.



Поделиться:


Последнее изменение этой страницы: 2016-09-20; просмотров: 165; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.168.192 (0.01 с.)