Семейство пировиноградной кислоты включает ала, сер, гли, цис и тре 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Семейство пировиноградной кислоты включает ала, сер, гли, цис и тре



Семейства аминокислот

 

 

Аминокислоты, входящие в ПВК.

 
 

Пути, по которым происходит превращение аминокислот в ПВК разные. Самый прямой и короткий путь проходит аланин, который превращается в пируват при участии АЛТ. Пировиноградная кислота–исходный субстрат глюконеогенеза, поэтому активность АЛТ в клетках печени высокая.

Семейство пировиноградной кислоты включает Ала, Сер, Гли, Цис и Тре

 

Обмен серина происходит несколькими путями. Возможно прямое превращение в ПВК при участии дегидратазы серина–пиридоксальфосфат зависимого фермента, который катализирует реакцию дезаминирования серина или превращение серина в глицин при участии гидроксиметил трансферазы серина. В этой реакции образуется также N5, N10 метилен тетрагидрофолат. Реакция, катализируемая гидроксиметил трансферазой обратима, что позволяет и углероды молекулы глицина через серин

 

 
 


глицин при участии гидроксиметил трансферазы серина. В этой реакции образуется также N5, N10 метилен тетрагидрофолат. Реакция, катализируемая гидроксиметил трансферазой обратима, что позволяет и углероды молекулы глицина через серин перевести в молекулу ПВК. Однако более значимый распад глицина происходит при участии митохондриального ферментного комплекса синтазы глицина, который катализирует глубокий распад глицина до аммиака и диоксида углерода.

С катаболизмом глицина тесно связан и обмен треонина. Альдолаза треонина –инициатор катаболизма этой аминокислоты. Под ее влиянием треонин распадается на молекулу глицина и уксусного альдегида. Уксусный альдегид восстанавливается при участии альдегиддегидрогеназы в уксусную кислоту, которую можно при помощи ацетаттиокиназы превратить в ацетилКоА. Второй путь катаболизма треонина включает специфическое дезаминирование этой аминокислоты при помощи серин-треонин дезаминазы, Образующийся при этом оксобутират может быть использован в синтезе аминокислот с разветвленным углеводородным радикалом.

Глицинурия – состояние характеризующееся большими потерями глицина почками при нормальном уровне глицина в крови. Это состояние связывают с нарушением реабсорбции глицина почками.

Пути синтеза серина и глицина используются и для образования других аминокислот

В синтезе серина и глицина важную роль играют промежуточные продукты обмена глюкозы, а глицин и серин используются в формировании других аминокислот, нуклеотидов и фосфолипидов. Когда E. coli растет на глюкозе, то почти 15 % из ассимилируемых углеродов проходит через сериновый путь.

Синтез серина и глицина начинаются с окисления 3-фосфоглицерата и образования 3-фосфогидроксипирувата и НАДН. Реакция переаминирования с глутаматом формирует 3 фосфосерин, а удаление фосфата приводит к образованию серина. Глицин образуется удалением метильной группы серина. Энергия для этого пути не требуется, фактически энергия высвобождается в форме восстановленного НАДН+Н+. У глицина существуют и другие пути синтеза. В клетках печени имеется глициновая трансаминаза, которая катализирует образование глицина из глиоксилата, используя аланин или глутаминовую кислоту в качестве

донора аминогруппы

. Синтез серина и глицина. Этот путь высвобождает энергию и углероды для дальнейшего употребления. R (тетрагидрофолат)

 

Пути использования глицина и серина

.

Основной член семейства a-кетоглутаровой кислоты – глутаминовая кислота

Глутаминовая кислота занимает важное место в промежуточном обмене нескольких аминокислот. К ним относятся глутамин, пролин, аргинин и гистидин.

Реакция превращения глутамина в глутаминовую кислоту напоминает превращение аспарагина в аспарагиновую и катализируется глутаминазой. Учитывая, что глутамин - главная транспортная форма аммиака глутаминаза

 
 

играет важную роль в органах, активно использующих аммиа и прежде всего в печени и почках.

Семейства аминокислот

 

 

Аминокислоты, входящие в ПВК.

 
 

Пути, по которым происходит превращение аминокислот в ПВК разные. Самый прямой и короткий путь проходит аланин, который превращается в пируват при участии АЛТ. Пировиноградная кислота–исходный субстрат глюконеогенеза, поэтому активность АЛТ в клетках печени высокая.

Семейство пировиноградной кислоты включает Ала, Сер, Гли, Цис и Тре

 

Обмен серина происходит несколькими путями. Возможно прямое превращение в ПВК при участии дегидратазы серина–пиридоксальфосфат зависимого фермента, который катализирует реакцию дезаминирования серина или превращение серина в глицин при участии гидроксиметил трансферазы серина. В этой реакции образуется также N5, N10 метилен тетрагидрофолат. Реакция, катализируемая гидроксиметил трансферазой обратима, что позволяет и углероды молекулы глицина через серин

 

 
 


глицин при участии гидроксиметил трансферазы серина. В этой реакции образуется также N5, N10 метилен тетрагидрофолат. Реакция, катализируемая гидроксиметил трансферазой обратима, что позволяет и углероды молекулы глицина через серин перевести в молекулу ПВК. Однако более значимый распад глицина происходит при участии митохондриального ферментного комплекса синтазы глицина, который катализирует глубокий распад глицина до аммиака и диоксида углерода.

С катаболизмом глицина тесно связан и обмен треонина. Альдолаза треонина –инициатор катаболизма этой аминокислоты. Под ее влиянием треонин распадается на молекулу глицина и уксусного альдегида. Уксусный альдегид восстанавливается при участии альдегиддегидрогеназы в уксусную кислоту, которую можно при помощи ацетаттиокиназы превратить в ацетилКоА. Второй путь катаболизма треонина включает специфическое дезаминирование этой аминокислоты при помощи серин-треонин дезаминазы, Образующийся при этом оксобутират может быть использован в синтезе аминокислот с разветвленным углеводородным радикалом.

Глицинурия – состояние характеризующееся большими потерями глицина почками при нормальном уровне глицина в крови. Это состояние связывают с нарушением реабсорбции глицина почками.

Пути синтеза серина и глицина используются и для образования других аминокислот

В синтезе серина и глицина важную роль играют промежуточные продукты обмена глюкозы, а глицин и серин используются в формировании других аминокислот, нуклеотидов и фосфолипидов. Когда E. coli растет на глюкозе, то почти 15 % из ассимилируемых углеродов проходит через сериновый путь.

Синтез серина и глицина начинаются с окисления 3-фосфоглицерата и образования 3-фосфогидроксипирувата и НАДН. Реакция переаминирования с глутаматом формирует 3 фосфосерин, а удаление фосфата приводит к образованию серина. Глицин образуется удалением метильной группы серина. Энергия для этого пути не требуется, фактически энергия высвобождается в форме восстановленного НАДН+Н+. У глицина существуют и другие пути синтеза. В клетках печени имеется глициновая трансаминаза, которая катализирует образование глицина из глиоксилата, используя аланин или глутаминовую кислоту в качестве

донора аминогруппы

. Синтез серина и глицина. Этот путь высвобождает энергию и углероды для дальнейшего употребления. R (тетрагидрофолат)

 



Поделиться:


Последнее изменение этой страницы: 2016-09-20; просмотров: 339; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.113.30 (0.009 с.)