Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Результат измерения округляется до того же десятичного разряда, которым оканчивается округленное значение абсолютной погрешности.↑ ⇐ ПредыдущаяСтр 2 из 2 Содержание книги
Поиск на нашем сайте
3. Округление производится лишь в окончательном ответе, а все предварительные вычисления проводят с одним-двумя лишними знаками. Пример. На вольтметре класса точности 1,5 с пределом измерений 500 В был получен отсчет измеряемого напряжения х = 320,5 В. Расчет погрешности удобнее вести в следующем порядке: вначале необходимо найти абсолютную погрешность, а затем — относительную. Абсолютная погрешность ; при и это дает ; относительная погрешность . Так как первая значащая цифра значения абсолютной погрешности (7,5 В) больше трех, то это значение должно быть округлено по обычным правилам округления до 8 В, но в значении относительной погрешности (2,34%) первая значащая цифра меньше 3, поэтому здесь должны быть сохранены в ответе два разряда и указано . Полученное значение должно быть округлено до того же десятичного разряда, которым оканчивается округленное значение абсолютной погрешности, т. е. до целых единиц вольт. Таким образом, в окончательном ответе должно быть сообщено: «Измерение произведено с относительной погрешностью . Измеренное напряжение или .
С учётом вышесказанного ниже приведены примеры округления и записи окончательных результатов
Примеры оформления результатов измерений Пример 1. Обработка результатов прямых измерений. Цель: определить высоту h, которая будет использована в следующем разделе для определения ускорения свободного падения. При этом, заданы доверительная вероятность и количество измерений . Данные измерений помещены в таблицу. Измерения проводились с помощью обычной матерчатой мерной ленты (рулетки с ценой деления С=0,01м) в условиях порывистого ветра, что привело к значительному разбросу результатов, как из-за растягивания ленты, так и вследствие влияния порывов ветра. Получившийся разброс хорошо заметен в таблице.
Вычисления.
1.Вычисляем среднее значение высоты 2. Заполняем ячейки второй и третьей строк таблицы. 3. Вычисляем исправленную среднеквадратическую погрешность (м). 4. Для заданной доверительной вероятности и количестве измерений по таблице определяем коэффициенты Стьюдента и Лапласа . 5. Вычисляем случайную составляющую погрешности: 6. Вычисляем абсолютную систематическую погрешность прибора. Для этого определяем среднеквадратическое отклонение прибора, которое равно половине цены деления Находим систематическую ошибку прибора по формуле =1 0,005=0,005 (м) 7. Вычисляем полную погрешность: = (м). В данном примере , поэтому без вычисления можно было считать, что . 8. Вычисляем относительную погрешность: . Или . После округления по правилам, результат измерения высоты записываем в виде: , при γ =0,683. Пример 2. Обработка результатов косвенных измерений. Цель: определить ускорение свободного падения для широты Мариуполя. Используем известную функциональную зависимость . Для определения ускорения свободного падения необходимо измерить время t падения тела с высоты h При прямых измерениях (см. Пример 1) получены: высота падения , время падения . Вычисляем среднее арифметическое ускорения свободного падения {м/с2) . Находим производные ; . Прежде чем рассчитывать абсолютную погрешность косвенной величины произведем преобразования: Обратите внимание на окончательное преобразование: . Оно определяется средним арифметическим косвенного измерения и относительными ошибками величин, полученных при прямых измерениях. Производим вычисления: (м/с2). Записываем предварительный результат g= (9,792±0,409) м/с2 Вычисляем относительную погрешность
Производим округление по правилам и записываем окончательный результат g = (9,79±0,41) м/с2, =4% при γ = 0,683. Построение графиков Более наглядными, чем таблицы, являются графики зависимостей исследуемых физических величин. Графики дают визуальное представление о связи между величинами, что крайне важно при интерпретации полученных данных, так как графическая информация легко воспринимается, вызывает больше доверия, обладает значительной ёмкостью. На основе графика легче сделать вывод о соответствии теоретических представлений данным эксперимента. Ниже изложены рекомендации по построению графиков.
Выбор бумаги. Графики строят только на бумаге, имеющей координатную сетку. Это может быть обычная миллиметровка с линейным масштабом по осям или логарифмическая бумага. Распределение осей. Графики, за редким исключением, строят в прямоугольной системе координат, где по горизонтальной оси (оси абсцисс) откладывают аргумент, независимую физическую величину, а по вертикальной оси (оси ординат) – функцию, зависимую физическую величину. Выбор масштабов. Обычно график строят на основании таблицы экспериментальных данных, откуда легко установить интервалы, в которых изменяются аргумент и функция. Их наименьшее и наибольшее значения задают значения масштабов, откладываемых вдоль осей. Не следует стремиться поместить на осях точку (0,0), используемую как начало отсчета. Для экспериментальных графиков масштабы по обеим осям выбирают независимо друг от друга и, как правило, соотносят с погрешностью измерения аргумента и функции: желательно, чтобы цена наименьшего деления каждой шкалы примерно равнялась соответствующей погрешности. Масштабная шкала должна легко читаться, а для этого необходимо выбрать удобную для восприятия цену деления шкалы: одной клетке должно соответствовать кратное количество единиц откладываемой физической величины. Нанесение шкал. Стрелки, задающие положительное направление, на координатных осях обычно не указывают, если выбрано принятое положительное направление осей: снизу – вверх и слева – направо. Оси подписывают: ось абсцисс – справа внизу, ось ординат – слева вверху. Против каждой оси указывают название или символ откладываемой по оси величины, а через запятую – единицы ее измерения, причем все единицы измерения приводят в русском написании в системе СИ. Числовой масштаб выбирают в виде равноотстоящих по значению чисел, например: 2; 4; 6; 8 … или 1,82; 1,84; 1,86 … Десятичный множитель масштаба выносят к концу шкалы. Масштабные риски проставляют по осям на одинаковом расстоянии друг от друга, чтобы они выходили на поле графика. По оси абсцисс цифры числового масштаба пишут под рисками, по оси ординат – слева от рисок. Нанесение точек. Экспериментальные точки аккуратно наносят на поле графика карандашом. Их всегда проставляют так, чтобы они были отчетливо различимы. Если в одних осях строят различные зависимости, полученные, например, при измененных условиях эксперимента или на разных этапах работы, то точки таких зависимостей должны отличаться друг от друга. Их следует отмечать разными значками (квадратами, кружками, крестиками и т.п.) или наносить карандашами разного цвета. Расчетные точки, полученные путем вычислений, размещают на поле графика равномерно. В отличие от экспериментальных, они должны слиться с теоретической кривой после ее построения. Расчетные точки, как и экспериментальные, наносят карандашом – при ошибке неверно поставленную точку легче стереть. Выносные координатные линии при нанесении точек не используют, так как для этих целей существует масштабная сетка, например, сетка миллиметровки. Лишние линии делают график неудобным для восприятия и работы с ним. Проведение кривых. Экспериментальные точки с помощью карандаша соединяют плавной кривой, чтобы они в среднем были одинаково расположены по обе стороны от проведенной кривой. Если известно математическое описание наблюдаемой зависимости, то теоретическая кривая проводится точно так же. Нет смысла стремиться провести кривую через каждую экспериментальную точку – ведь кривая является только интерпретацией результатов измерений. По сути, есть только экспериментальные точки, а кривая – произвольное, не всегда верное, домысливание экспериментатора. Представим, что все экспериментальные точки соединены и на графике получилась ломаная линия. Она не имеет ничего общего с истинной физической зависимостью! Это следует из того, что форма полученной линии не будет воспроизводиться при повторных сериях измерений.
Напротив, теоретическую зависимость строят на графике таким образом, чтобы она плавно проходила по всем расчетным точкам. Это требование очевидно, так как теоретические значения координат точек могут быть вычислены сколь угодно точно. Правильно построенная кривая должна заполнять все поле графика, что будет свидетельством правильного выбора масштабов по каждой из осей. Если же значительная часть поля оказывается незаполненной, то необходимо заново выбрать масштабы и перестроить зависимость. Отображение погрешностей измерений на графике. Результаты измерений, на основании которых строят экспериментальные зависимости, содержат погрешности. Для указания их значений на графике используют два основных способа. Первый упоминался при обсуждении вопроса выбора масштабов. Он состоит в выборе цены деления масштабной шкалы графика, которая должна равняться погрешности откладываемой по данной оси величины. В таком случае точность измерений не требует дополнительных пояснений. Если достичь соответствия погрешности и цены деления не удается, используют второй способ, заключающийся в прямом отображении погрешностей на поле графика. А именно, вокруг проставленной экспериментальной точки строят два отрезка, параллельные осям абсцисс и ординат. В выбранном масштабе длина каждого отрезка должна равняться удвоенной погрешности величины, откладываемой по параллельной оси. Центр отрезка должен приходиться на экспериментальную точку. Вокруг точки образуются, так называемые, ”усы”, задающие область возможных значений измеряемой величины. Погрешности становятся зримыми. Отметим, что указанный способ чаще всего применяют тогда, когда погрешности меняются от измерения к измерению.
Завершение работы. График нумеруют, ему дают название, кратко отражающее содержание построенной зависимости. Все графические символы, использованные при построении, поясняют в подписи к графику, которую располагают под графиком или на не занятой кривой части поля.
Литература 1. Гмурман В.Е. Теория вероятностей и математическая статистика. - Москва, «Высшая школа».-2000.-479с. 2. Гутер Р.С., Овчинский Б.В.Элементы численного анализа и математической обработки результатов опытов.-Москва, «Наука».-1970.-432с. 3. П. В. Новицкий, И. А. Зограф. Оценка погрешностей результатов измерений. Л.:: Энергоатомиздат. Лениград. отд-ние, 1991. – 304с. 4. Кондрашев А.П., Шестопалов Е.В. Основы физического эксперимента и математическая обработка результатов измерений.-М.,Атомиздат,-1977,200с.
Оглавление стр
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-09-20; просмотров: 250; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.239.207 (0.012 с.) |