Гармонические колебания. Дифференциальное уравнение гармонических колебаний, его решения. Превращение энергии при колебаниях. Векторная диаграмма. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Гармонические колебания. Дифференциальное уравнение гармонических колебаний, его решения. Превращение энергии при колебаниях. Векторная диаграмма.



Гармонические колебания. Дифференциальное уравнение гармонических колебаний, его решения. Превращение энергии при колебаниях. Векторная диаграмма.

Колебаниями называются процессы, отличающиеся той или иной степенью повторяемости (качание маятника часов, колебания струны или ножек камертона, напряжение между обкладками конденсатора в контуре радиоприемника, работа сердца).

Простейшими являются гармонические колебания, т.е. такие колебания, при которых колеблющаяся величина (например, отклонение маятника) изменяется со временем по закону синуса или косинуса.

В этом случае упругая сила F1 уравновешивает силу тяжести mg. Если сместить шарик на расстояние х, то на него будет действовать большая упругая сила (F 1 + F). Изменение упругой силы по закону Гука пропорционально изменению длины пружины или смещению шарика х:

F=-kx,(1)

где k — жесткость пружины. Знак "-" отражает то обстоятельство, что смещение и сила имеют противоположные направления.

Сила F обладает следующими свойствами: 1) она пропорциональна смещению шарика из положения равновесия; 2) она всегда направлена к положению равновесия.

В нашем примере сила по своей природе упругая. Может случиться, что сила иного происхождения обнаруживает такую же закономерность, то есть оказывается равной - kx. Силы такого вида, неупругие по природе, но аналогичные по свойствам силам, возникающим при малых деформациях упругих тел, называют квазиупругими.

Уравнение второго закона Ньютона для шарика имеет вид:

, или .

Так как k и m — обе величины положительные, то их отношение можно приравнять квадрату

некоторой величины w0, т.е. мы можем ввести обозначение . Тогда получим

Таким образом, движение шарика под действием силы вида (1) описывается линейным однородным дифференциальным уравнением второго порядка.

Легко убедиться подстановкой, что решение уравнения имеет вид:

где (w0 t + a0) = a — фаза колебаний; a0 — начальная фаза при t = 0; w0 — круговая частота колебаний; A — их амплитуда.

Итак, смещение x изменяется со временем по закону косинуса.

Выясним, как изменяется со временем кинетическая Еk и потенциальная Еп энергия гармонического колебания. Кинетическая энергия равна:

,

где k = m w02.

Потенциальную энергию находим из формулы потенциальной энергии для упругой деформации и используя (3):

EП.

Складывая (4) и (5), с учетом соотношения , получим:

E = EK + EП = .

Итак, смещение x изменяется со временем по закону косинуса.

Следовательно, движение системы, находящейся под действием силы вида f = - kx, представляет собой гармоническое колебание.


График гармонического колебания показан на рисунке. Период этих колебаний находится из формулы:

Электрический колебательный контур. Уравнение собственных колебаний,формула Томсона. Взаимопревращения энергии в контуре.

Колебательный контур — осциллятор, представляющий собой электрическую цепь, содержащую соединённые катушку индуктивности и конденсатор. В такой цепи могут возбуждаться колебания тока (и напряжения).

Колебательный контур — простейшая система, в которой могут происходить свободные электромагнитные колебания

Резонансная частота контура определяется так называемой формулой Томсона:

 

Колебательный RLC-контур.

Уравнение свободных затухающих колебаний можно получить, исходя из того, что в отсутствии внешнего источника напряжения, сумма падений напряжений на индуктивности, емкости и сопротивлении равна нулю для любого момента времени:

Полная энергия колебательного контура

; ;


где We — энергия электрического поля колебательного контура в данный момент времени, С — электроемкость конденсатора, u — значение напряжения на конденсаторе в данный момент времени, q — значение заряда конденсатора в данный момент времени, Wm — энергия магнитного поля колебательного контура в данный момент времени, L — индуктивность катушки, i —значение силы тока в катушке в данный момент времени.

Вынужденные колебания осциллятора при гармоническом воздействии. Дифференциальное уравнение вынужденных колебаний и его решение. Время установления колебаний. Явление резонанса. Связь параметров резонансных кривых с добротностью.

Чтобы в реальной колебательной системе осуществлять незатухающие колебания, надо компенсировать каким-либо потери энергии. Такая компенсация возможна, если использовать какой-либо периодически действующего фактора X(t), который изменяется по гармоническому закону:

При рассмотрении механических колебаний, то роль X(t) играет внешняя вынуждающая сила

Закон движения для пружинного маятника (формула (9) предыдущего раздела) запишется как

Используя формулу для циклической частоты свободных незатухающих колебаний прижинного маятника и (10) предыдущего раздела, получим уравнение

При рассмотрении электрического колебательный контура роль X(t) играет подводимая к контуру внешняя соответсвующим образом периодически изменяющаяся по гармоническому закону э.д.с. или переменное напряжение

Тогда дифференциальное уравнение колебаний заряда Q в простейшем контуре, используя (3), можно записать как

Зная формулу циклической частоты свободных колебаний колебательного контура и формулу предыдущего раздела (11), придем к дифференциальному уравнению

Колебания, которые возникают под действием внешней периодически изменяющейся силы или внешней периодически изменяющейся э.д.с., называются соответственно вынужденными механическими и вынужденными электромагнитными колебаниями.

Отражение

Отраже́ние — физический процесс взаимодействия волн или частиц с поверхностью, изменение направления волнового фронта на границе двух сред с разными оптическими свойствами, в котором волновой фронт возвращается в среду, из которой он пришёл. Одновременно с отражением волн на границе раздела сред, как правило, происходит преломление волн (за исключением случаев полного внутреннего отражения).

Законы отражения. Формулы Френеля

Закон отражения света — устанавливает изменение направления хода светового луча в результате встречи с отражающей (зеркальной) поверхностью: падающий и отражённый лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения, и эта нормаль делит угол между лучами на две равные части. «угол падения равен углу отражения»

Сдвиг Фёдорова

Сдвиг Фёдорова — явление бокового смещения луча света при отражении. Отражённый луч не лежит в одной плоскости с падающим лучом.

Механизм отражения

В классической электродинамике, свет рассматривается как электромагнитная волна, которая описывается уравнениями Максвелла. Световые волны, падающие на диэлектрик вызывают малые колебания диэлектрической поляризации в отдельных атомах, в результате чего каждая частица излучает вторичные волны во всех направлениях.

16. Условия необходимые для получения интерференционной картины. Когерентность и монохроматичность световых волн. Время и длина когерентности. Радиус когерентности.

Интерференцию света можно объяснить, рассматривая интерференцию волн Необходимым условием интерференции волн является их когерентность, т. е. согласованное протекание во времени и пространстве нескольких колебательных или волновых процессов.

монохроматические волны - не ограниченные в пространстве волны одной определенной и строго постоянной частоты. Так как ни один реальный источник не дает строго монохроматического света, то волны, излучаемые любыми независимыми источниками света, всегда некогерентны.

Любой немонохроматический свет можно представить в виде совокупности сменяющих друг друга независимых гармонических цугов. Средняя продолжительность одного цуга tког называется временем когерентности. Когерентность существует только в пределах одного цуга, и время когерентности не может превышать время излучения, т. е. tког < t. Прибор обнаружит четкую интерференционную картину лишь тогда, когда время разрешения прибора значительно меньше времени когерентности накладываемых световых волн.

Если волна распространяется в однородной среде, то фаза колебаний в определен ной точке пространства сохраняется только в течение времени когерентности tког. За это время волна распространяется в вакууме на расстояние lког = ctког, называемое длиной когерентности (или длиной цуга). Таким образом, длина когерентности есть расстояние, при прохождении которого две или несколько волн утрачивают когерентность. Отсюда следует, что наблюдение интерференции света возможно лишь при оптических разностях хода, меньших длины когерентности для используемого источника света.

 

Чем ближе волна к монохроматической, тем меньше ширина Dw спектра ее частот и, как можно показать, больше ее время когерентности tког, следовательно, и длина когерентности lког. Когерентность колебаний, которые совершаются в одной и той же точке пространства, определяемая степенью монохроматичности волн, называется временной когерентностью.

Наряду с временной когерентностью для описания когерентных свойств волн в плоскости, перпендикулярной направлению их распространения, вводится понятие пространственной когерентности. Два источника, размеры и взаимное расположение которых позволяют (при необходимой степени монохроматичности света) наблюдать интерференцию, называются пространственно-когерентными. Радиусом когерентности (или длиной пространственной когерентности) называется максимальное поперечное направлению распространения волны расстояние, на котором возможно проявление интерференции. Таким образом, пространственная когерентность определяется ради усом когерентности.

Радиус когерентности

Условия интерференции

Таким образом, необходимое условие наличия четкой интерференционной картины (в случае квазимонохроматических волн с постоянными амплитудами) – разность фаз двух складываемых колебаний сохраняет свое значение за время усреднения, хотя сама фаза может меняться (хотя бы и хаотически и в больших пределах).

Опыт Юнга

В опыте пучок света направляется на непрозрачный экран-ширму с двумя параллельными прорезями, позади которого устанавливается проекционный экран. Особенность прорезей в том, что их ширина приблизительно равна длине волны излучаемого света. Так как свет представляет собой распространяющиеся волны (волновая теория света), то, согласно принципу Гюйгенса, каждая прорезь является источником вторичных волн. Если вторичные волны достигнут линии в середине проекционного экрана, находящейся на равном удалении от прорезей, синхронно и в одной фазе, то на серединной линии экрана их амплитуды прибавятся, что создаст максимум яркости. На определенном удалении от центральной линии, напротив, волны окажутся в противофазе — их амплитуды компенсируются, что создаст минимум яркости (темная полоса). По мере дальнейшего удаления от средней линии яркость периодически изменяется, возрастая до максимума и снова убывая.

Стопа Столетова

Стопа столетова из полимерных пластинок. ф(Б)- угол брюстера.

 

Призма Николя

 

Призма Николя представляет собой две одинаковые треугольные призмы из исландского шпата, склеенные тонким слоем канадского бальзама. Призмы вытачиваются так, чтобы торец был скошен под углом 68° относительно направления проходящего света, а склеиваемые стороны составляли прямой угол с торцами. При этом оптическая ось кристалла (AB) находится под углом 64° с направлением света.

Апертура полной поляризации призмы составляет 29°. Особенностью призмы является изменение направления выходящего луча при вращении призмы, обусловленное преломлением скошенных торцов призмы. Призма не может применяться для поляризации ультрафиолета, так как канадский бальзам поглощает ультрафиолет.

Свет с произвольной поляризацией, проходя через торец призмы испытывает двойное лучепреломление, расщепляясь на два луча — обыкновенный, имеющий горизонтальную плоскость поляризации (AO) и необыкновенный, с вертикальной плоскостью поляризации (АE). После чего обыкновенный луч испытывает полное внутреннее отражение о плоскость склеивания и выходит через боковую поверхность. Необыкновенный беспрепятственно выходит через противоположный торец призмы.

Гармонические колебания. Дифференциальное уравнение гармонических колебаний, его решения. Превращение энергии при колебаниях. Векторная диаграмма.

Колебаниями называются процессы, отличающиеся той или иной степенью повторяемости (качание маятника часов, колебания струны или ножек камертона, напряжение между обкладками конденсатора в контуре радиоприемника, работа сердца).

Простейшими являются гармонические колебания, т.е. такие колебания, при которых колеблющаяся величина (например, отклонение маятника) изменяется со временем по закону синуса или косинуса.

В этом случае упругая сила F1 уравновешивает силу тяжести mg. Если сместить шарик на расстояние х, то на него будет действовать большая упругая сила (F 1 + F). Изменение упругой силы по закону Гука пропорционально изменению длины пружины или смещению шарика х:

F=-kx,(1)

где k — жесткость пружины. Знак "-" отражает то обстоятельство, что смещение и сила имеют противоположные направления.

Сила F обладает следующими свойствами: 1) она пропорциональна смещению шарика из положения равновесия; 2) она всегда направлена к положению равновесия.

В нашем примере сила по своей природе упругая. Может случиться, что сила иного происхождения обнаруживает такую же закономерность, то есть оказывается равной - kx. Силы такого вида, неупругие по природе, но аналогичные по свойствам силам, возникающим при малых деформациях упругих тел, называют квазиупругими.

Уравнение второго закона Ньютона для шарика имеет вид:

, или .

Так как k и m — обе величины положительные, то их отношение можно приравнять квадрату

некоторой величины w0, т.е. мы можем ввести обозначение . Тогда получим

Таким образом, движение шарика под действием силы вида (1) описывается линейным однородным дифференциальным уравнением второго порядка.

Легко убедиться подстановкой, что решение уравнения имеет вид:

где (w0 t + a0) = a — фаза колебаний; a0 — начальная фаза при t = 0; w0 — круговая частота колебаний; A — их амплитуда.

Итак, смещение x изменяется со временем по закону косинуса.

Выясним, как изменяется со временем кинетическая Еk и потенциальная Еп энергия гармонического колебания. Кинетическая энергия равна:

,

где k = m w02.

Потенциальную энергию находим из формулы потенциальной энергии для упругой деформации и используя (3):

EП.

Складывая (4) и (5), с учетом соотношения , получим:

E = EK + EП = .

Итак, смещение x изменяется со временем по закону косинуса.

Следовательно, движение системы, находящейся под действием силы вида f = - kx, представляет собой гармоническое колебание.


График гармонического колебания показан на рисунке. Период этих колебаний находится из формулы:



Поделиться:


Последнее изменение этой страницы: 2016-09-19; просмотров: 2547; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.111.9 (0.042 с.)